6 research outputs found

    Seismic Optimization of High Cantilever Multianchor Pile Strengthening Soil Slopes against Earthquakes

    No full text
    To explore the optimal seismic performance of multianchor pile, we carried out a series of shaking table tests. Based on the special form of multianchor piles’ reinforcement, we put forward the optimal design scheme of using EPS foam as damping layers and energy-dissipation springs for improving the self-coordinating devices of anchor head. By measuring acceleration and dynamic soil-pressure response under different intensities of vibration, we analyzed the correlation between acceleration caused by seismic wave action and damage characterized by time-domain and spectral characteristics of dynamic soil-pressure. We discuss in detail the relationship between frequency and specific period of dynamic soil-pressure and acceleration. We then used the SPECTR program to calculate the energy spectrum. Under the reciprocating action of seismic waves of different intensities, our slope model showed the continuous effect of spatial coupling deformation leading to regional damage and failure. Furthermore, the spatial distribution for amplitude of acceleration and dynamic soil-pressure showed the outstanding response of lateral amplitude of pile structures without optimization. The energy-spectrum distribution of acceleration seismic input was orderly, while the dynamic soil-pressure distribution of piles was disordered. Low-frequency (≤10 Hz) seismic waves have a great influence on these structures. The difference of acceleration hysteresis along the elevations was mainly caused by the propagation stage after the main earthquake. The correlation between dynamic soil-pressure and acceleration response in each group before the pile occurred in the same earthquake area was very weak, showing a low correlation. The optimization effect of optimized structures is related to the position of the shock-absorbing layer. Under high acceleration, multianchor piles easily cause bulge failures or shear failures at the positions of sliding surfaces. These results are helpful for improvements to reliably optimize designs in pile structure dynamic parameters

    Shaking table test and cumulative deformation evaluation analysis of a tunnel across the hauling sliding surface

    No full text
    Abstract To explore the cumulative deformation effect of the dynamic response of a tunnel crossing the hauling sliding surface under earthquakes, the shaking table test was conducted in this study. Combined with the numerical calculations, this study proposed magnification of the Arias intensity (MIa) to characterize the overall local deformation damage of the tunnel lining in terms of the deformation characteristics, frequency domain, and energy. Using the time‐domain analysis method, the plastic effect coefficient (PEC) was proposed to characterize the degree of plastic deformation, and the applicability of the seismic cumulative failure effect (SCFE) was discussed. The results show that the low‐frequency component (f1 and f2 ≤ 10 Hz) and the high‐frequency component (f3 and f4 > 10 Hz) acceleration mainly cause global and local deformation of the tunnel lining. The local deformation caused by the high‐frequency wave has an important effect on the seismic damage of the lining. The physical meaning of PEC is more clearly defined than that of the residual strain, and the SCFE of the tunnel lining can also be defined. The SCFE of the tunnel lining includes the elastic deformation effect stage (<0.15g), the elastic–plastic deformation effect stage (0.15g–0.30g), and the plastic deformation effect stage (0.30g–0.40g). This study can provide valuable theoretical and technical support for the construction of traffic tunnels in high‐intensity earthquake areas

    Mesenchymal MACF1 Facilitates SMAD7 Nuclear Translocation to Drive Bone Formation

    No full text
    Microtubule actin crosslinking factor 1 (MACF1) is a large crosslinker that contributes to cell integrity and cell differentiation. Recent studies show that MACF1 is involved in multiple cellular functions such as neuron development and epidermal migration, and is the molecular basis for many degenerative diseases. MACF1 is highly abundant in bones, especially in mesenchymal stem cells; however, its regulatory role is still less understood in bone formation and degenerative bone diseases. In this study, we found MACF1 expression in mesenchymal stem cells (MSCs) of osteoporotic bone specimens was significantly lower. By conditional gene targeting to delete the mesenchymal Macf1 gene in mice, we observed in MSCs decreased osteogenic differentiation capability. During early stage bone development, the MACF1 conditional knockout (cKO) mice exhibit significant ossification retardation in skull and hindlimb, and by adulthood, mesenchymal loss of MACF1 attenuated bone mass, bone microarchitecture, and bone formation capability significantly. Further, we showed that MACF1 interacts directly with SMAD family member 7 (SMAD7) and facilitates SMAD7 nuclear translocation to initiate downstream osteogenic pathways. Hopefully these findings will expand the biological scope of the MACF1 gene, and provide an experimental basis for targeting MACF1 in degenerative bone diseases such as osteoporosis
    corecore