5 research outputs found

    Multi-locus sequence analyses reveal a clonal L. borgpetersenii genotype in a heterogeneous invasive Rattus spp. community across the City of Johannesburg, South Africa

    Get PDF
    Funding Information: This study was made possible by a Royal Society for Tropical Medicine and Hygiene small grant (MM, Grant Number GR000556), by a Biotechnology and Biological Sciences Research Council (BBSRC) PhD studentship (MM, Grant Number BB/M010996/1) and by support from the Wellcome Trust (MM, Grant Number 216634/Z/19/Z) . Rodent genotyping was funded through the Centers for Disease Control and Prevention (CDC) Cooperative Agreement (AB, Grant Number 5 NU2GGH001874-02-00) and a Facility Grant (UID78566) from the National Research Foundation of South Africa.Peer reviewedPublisher PD

    Molecular detection and characterisation of potentially zoonotic bacteria in bathyergids from the Western Cape Province

    No full text
    Globally emphasis has been given to identify emerging and re-emerging pathogens. Rapid urban expansion creates a problem which is two-fold. Firstly, increasing slum living conditions due to inadequate rate of infrastructure development results in an increased reliance on natural resources, including the capture and consumption of surrounding wildlife to subsist, thereby facilitating the transfer of emergent zoonotic pathogens. Secondly, through activities such as pollution or alien species introductions, the rapid transformation of once pristine environments, alters natural systems, potentially exposing these environments to new bacterial pathogens. Therefore, the main aim of this study was to assess overlooked bacterial species harboured by four host species (Bathyergus suillus, Georychus capensis, Cryptomys hottentotus hottentotus and Fukomys damarensis) belonging to the subterranean rodent family Bathyergidae, which inhabit an environment well-suited for an array of bacterial species, and which varied in their exposure to human settlements. Bacterial prevalence and diversity was initially evaluated using broad-range PCR techniques in combination with nucleotide sequencing. This revealed high levels of bacterial prevalence (82.91%) and mixed infections (22.60%) in bathyergid species. Two bacterial groups, the Bacillus cereus complex (a group of soil-dwelling bacterial strains with pathogenic potential with an overall prevalence of 8.55%) and haemotropic Mycoplasma strains (vector-borne bacterial strains of zoonotic potential with an overall prevalence of 1.28%) were subsequently selected for further genetic analysis with genus and species-specific PCRs. Bacillus molecular screening and phylogenetic analyses was achieved by targeting four gene regions with seven published primer assays and two novel PCR assays. This enabled identification of two B. cereus complex strains in bathyergid lungs and revealed an overall B. cereus complex prevalence of 17.95% for the 234 bathyergid lung samples screened. Bacillus genome prevalence was significantly higher in B. suillus individuals (45.35%), sampled in a peri-urban environment, compared to the other bathyergid species sampled from pristine habitats (ranging from 0% - 4.44%). Anthropogenic activities in the area where B. suillus was sampled could, at least partially, attribute to the perceived difference between urban and naturally sampled bathyergid species, highlighting the role of B. suillus to act as both a reservoir of potentially zoonotic pathogens and as a sentinel for anthropogenic soiling. Mycoplasma molecular screening using three different PCR assays, all targeting the 16S rRNA gene region, confirmed an overall haemotropic Mycoplasma prevalence of 24.13% in the 286 bathyergid organs (lung, spleen and liver) screened. A significantly higher prevalence and diversity of haemotropic Mycoplasma strains was found in B. suillus lungs (41.86%) compared to its naturally occurring relatives (ranging from 0%-36%). Phylogenetic analyses identified six novel haemotropic Mycoplasma strains, all grouping within a discrete monophyletic cluster, sister to Mycoplasma coccoides, and comprising two well-supported sub-clusters. The human introduction of commensal rodents harbouring Mycoplasma strains transferred through cosmopolitan arthropod vectors to indigenous bathyergids, likely underlies the higher prevalence in urban areas, although other biotic and abiotic factors affecting ectoparasite load also merit consideration. The data generated by the current study indicate the need to identify largely overlooked and potentially zoonotic bacterial pathogens in subterranean mammals and emphasises the importance of monitoring anthropogenically-introduced, opportunistic pathogens and the threats they pose to vulnerable communities and co-occurring, free-living animal speciesDissertation (MSc)--University of Pretoria, 2017.Airports Company of South Africa (ACSA)National Research Foundation (NRF)Zoology and EntomologyMScUnrestricte

    Subterranean mammals : reservoirs of infection or over-looked sentinels of anthropogenic environmental soiling?

    No full text
    Global reports of emergent pathogens in humans have intensified efforts to identify wildlife reservoirs. Subterranean mammals, such as bathyergid mole rats, are largely overlooked, despite their high-level exposure to soil-dwelling microbes. Initial assessment of bathyergid reservoir potential was determined using a broad-range 16S rRNA PCR approach, which revealed an 83% PCR-positivity for the 234 bathyergid lung samples evaluated. The presence of the Bacillus cereus complex, a ubiquitous bacterial assemblage, containing pathogenic and zoonotic species, was confirmed through nucleotide sequencing, prior to group- and species-specific PCR sequencing. The latter allowed for enhanced placement and prevalence estimations of Bacillus in four bathyergid species sampled across a range of transformed landscapes in the Western Cape Province, South Africa. Two novel Bacillus strains (1 and 2) identified on the basis of the concatenated 16S rRNA-groEL-yeaC data set (2066 nucleotides in length), clustered with B. mycoides (ATCC 6462) and B. weihenstephanensis (WSBC 10204), within a well-supported monophyletic lineage. The levels of co-infection, evaluated with a groEL strain-specific assay, developed specifically for this purpose, were high (71%). The overall Bacillus presence of 17.95% (ranging from 0% for Georychus capensis to 45.35% for Bathyergus suillus) differed significantly between host species (χ2 = 69.643; df = 3; P < 0.05), being significantly higher in bathyergids sampled near an urban informal settlement (χ2 = 70.245; df = 3; P < 0.05). The results highlight the sentinel potential of soil-dwelling mammals for monitoring anthropogenically introduced, opportunistic pathogens and the threats they pose to vulnerable communities, particularly in the developing world.The Airports Company of South Africa (ACSA) and the National Research Foundation of South Africa for research support through individual (ADSB), chair (NCB) and facilities (No: UID78566) grants.http://link.springer.com/journal/103932018-12-01hj2018Mammal Research InstituteZoology and Entomolog

    Haemoplasma Prevalence and Diversity in Three Invasive Rattus Species from Gauteng Province, South Africa

    Get PDF
    Invasive Rattus species are carriers of haemotropic Mycoplasmas (haemoplasmas) globally, but data from Africa are lacking. Using a PCR-sequencing approach, we assessed haemoplasma prevalence and diversity in kidney and buccal swabs collected from three invasive Rattus species (Rattus rattus, R. norvegicus and R. tanezumi) in Gauteng Province, South Africa. Whilst the overall sequence-confirmed haemoplasma prevalence was 38.4%, infection rates in R. rattus (58.3%) were significantly higher (&chi;2 = 12.96; df = 2; n = 99 p &lt; 0.05) than for R. tanezumi (14.3%). Differences between host sex (&chi;2 = 3.59 &times; 10&minus;31; df = 1; n = 99; p = 1.00) and age (&chi;2 = 4.28; df = 2; n = 99; p = 0.12) were not significant. Whilst buccal (1.01%) and ectoparasite positivity (2.13%) were low, these results suggest that multiple transmission routes are possible. Three phylogenetically distinct lineages, consistent with global rat-associated strains described to date, were detected, namely, &lsquo;Candidatus Mycoplasma haemomuris subsp. Ratti&rsquo;, and two Rattus-specific haemoplasmas that are yet to be formally described. These results expand the known distribution of invasive rat-associated haemoplasmas and highlight the potential for pathogen co-invasion of new territories together with invading rodent hosts

    Attempted molecular detection of the thermally dimorphic human fungal pathogen Emergomyces africanus in terrestrial small mammals in South Africa

    Get PDF
    The ecological niche of Emergomyces africanus (formerly Emmonsia species), a dimorphic fungus that causes an AIDS-related mycosis in South Africa, is unknown. We hypothesized that natural infection with E. africanus occurs in wild small mammals. Using molecular detection with primers specific for E. africanus, we examined 1402 DNA samples from 26 species of mole-rats, rodents, and insectivores trapped in South Africa that included 1324 lung, 37 kidney, and 41 liver specimens. DNA of E. africanus was not detected in any animals. We conclude that natural infection of wild small mammals in South Africa with E. africanus has not been proven.The Finds Wetenschappelijk Onderzoek - Slanderer. ISS was supported by the R. Samuel McLaughlin - Manitoba Medical Services Foundation and University of Manitoba Dean's Fellowship Fund; and a Marie Curie International Research Staff Exchange Scheme award.https://academic.oup.com/mmy2019-06-01hj2018Mammal Research InstituteZoology and Entomolog
    corecore