28 research outputs found

    Schistosomes Induce Regulatory Features in Human and Mouse CD1dhi B Cells: Inhibition of Allergic Inflammation by IL-10 and Regulatory T Cells

    Get PDF
    Chronic helminth infections, such as schistosomes, are negatively associated with allergic disorders. Here, using B cell IL-10-deficient mice, Schistosoma mansoni-mediated protection against experimental ovalbumin-induced allergic airway inflammation (AAI) was shown to be specifically dependent on IL-10-producing B cells. To study the organs involved, we transferred B cells from lungs, mesenteric lymph nodes or spleen of OVA-infected mice to recipient OVA-sensitized mice, and showed that both lung and splenic B cells reduced AAI, but only splenic B cells in an IL-10-dependent manner. Although splenic B cell protection was accompanied by elevated levels of pulmonary FoxP3+ regulatory T cells, in vivo ablation of FoxP3+ T cells only moderately restored AAI, indicating an important role for the direct suppressory effect of regulatory B cells. Splenic marginal zone CD1d+ B cells proved to be the responsible splenic B cell subset as they produced high levels of IL-10 and induced FoxP3+ T cells in vitro. Indeed, transfer of CD1d+ MZ-depleted splenic B cells from infected mice restored AAI. Markedly, we found a similarly elevated population of CD1dhi B cells in peripheral blood of Schistosoma haematobium-infected Gabonese children compared to uninfected children and these cells produced elevated levels of IL-10. Importantly, the number of IL-10-producing CD1dhi B cells was reduced after anti-schistosome treatment. This study points out that in both mice and men schistosomes have the capacity to drive the development of IL-10-producing regulatory CD1dhi B cells and furthermore, these are instrumental in reducing experimental allergic inflammation in mice

    Long Non-coding RNAs Rian and Miat Mediate Myofibroblast Formation in Kidney Fibrosis

    No full text
    There is an increasing prevalence of chronic kidney disease (CKD), which associates with the development of interstitial fibrosis. Pericytes (perivascular fibroblasts) provide a major source of α-SMA-positive myofibroblasts that are responsible for the excessive deposition of extracellular matrix. In order to identify pericyte long non-coding RNAs (lncRNAs) that could serve as a target to decrease myofibroblast formation and counteract the progression of kidney fibrosis we employed two models of experimental kidney injury, one focused on kidney fibrosis (unilateral ureteral obstruction; UUO), and one focused on acute kidney injury that yields kidney fibrosis in the longer term (unilateral ischemia-reperfusion injury; IRI). This was performed in FoxD1-GC;tdTomato stromal cell reporter mice that allowed pericyte fate tracing. Tomato red-positive FoxD1-derivative cells of control and injured kidneys were FACS-sorted and used for lncRNA and mRNA profiling yielding a distinctive transcriptional signature of pericytes and myofibroblasts with 244 and 586 differentially expressed lncRNAs (>twofold, P < 0.05), in the UUO and IRI models, respectively. Next, we selected two differentially expressed and conserved lncRNAs, Rian (RNA imprinted and accumulated in nucleus) and Miat (Myocardial infarction associated transcript), and explored their potential regulatory role in myofibroblast formation through knockdown of their function with gapmers. While Miat was upregulated in myofibroblasts of UUO and IRI in mice, gapmer silencing of Miat attenuated myofibroblast formation as evidenced by decreased expression of α-SMA, col1α1, SMAD2, and SMAD3, as well as decreased α-SMA and pro-collagen-1α1 protein levels. In contrast, silencing Rian, which was found to be downregulated in kidney myofibroblast after IRI and UUO, resulted in increased myofibroblast formation. In addition, we found microRNAs that were previously linked to Miat (miR-150) and Rian (14q32 miRNA cluster), to be dysregulated in the FoxD1-derivative cells, suggesting a possible interaction between miRNAs and these lncRNAs in myofibroblast formation. Taken together, lncRNAs play a regulatory role in myofibroblast formation, possibly through interacting with miRNA regulation, implicating that understanding their biology and their modulation may have the potential to counteract the development of renal fibrosis

    Protective effect of Schistosoma mansoni infection on allergic airway inflammation depends on the intensity and chronicity of infection

    No full text
    Background: Population studies have suggested that chronic and intense helminth infections, in contrast to acute and mild helminth infections, might suppress allergic airway inflammation. Objective: We sought to address the question of how the chronicity and intensity of helminth infections affect allergic airway inflammation in a well-defined experimental model. Methods: C57/B16 mice were infected with Schistosoma mansoni, followed by sensitization and challenge with ovalbumin (OVA), and different stages and intensities of infection were studied. To this end, mice were analyzed at 8, 12, or 16 weeks, representing the acute, intermediate, or chronic phases of infection, respectively. Results: Lung lavage eosinophilia, peribronchial inflammation, and OVA-induced airway hyperresponsiveness were increased during acute infection but significantly decreased when infection progressed into chronicity. Decreases in lung lavage eosinophilia were parasite density-dependent. Similar levels of OVA-specific IgE were found during all phases of infection, whereas both OVA-specific and parasite-specific T(H)2 cytokine levels were significantly reduced during chronic infection. Inhibition of airway inflammation could be transferred to OVA-sensitized recipient mice by B cells and CD4(+) T cells from spleens of chronically, but not acutely, infected mice. This suppression was IL-10-dependent. Conclusion: During chronic, but not acute, helminth infections, suppressive mechanisms are induced that regulate immune reactions to inhaled allergens. These data confirm human epidemiologic observations in a well-controlled animal model. Clinical implications: Characterization of chronic helminth infection-induced regulatory mechanisms will help in the development of future therapeutics to treat or prevent allergic disease

    The human kidney capsule contains a functionally distinct mesenchymal stromal cell population

    No full text
    <div><p>We recently demonstrated that the adult human kidney cortex contains a perivascular stromal cell (kPSC) that shows organotypic properties and is important for repair and stabilisation of kidney function. Not only the kidney cortex but also the kidney capsule contains stromal cells that are important for the three dimensional organisation of the kidney during nephrogenesis. They provide the barrier function of the capsule which is critical for homeostatic processes such as pressure natriuresis. We postulated that stromal cells derived from the kidney capsule may therefore also have specific properties and functions. To this end, we isolated these capsule mesenchymal stromal cells (cMSC) from human cadaveric kidneys that were not suitable for transplantation. There were several similarities between cMSCs and kPSCs including support of vascular plexus formation, phenotypic marker expression and resistance against myofibroblast transformation. However, compared to kPSCs, cMSCs showed distinct mRNA and miRNA expression profiles, showed increased immunosuppressive capacity, and displayed strongly reduced HGF production, contributing to the inability to enhance kidney epithelial repair. Therefore cMSCs are a distinct, novel human kidney-derived MSC-population and these data underpin the large functional diversity of phenotypic similar stromal cells in relation to their anatomic site, even within one organ.</p></div

    Characterization of cMSCs.

    No full text
    <p>A) cMSCs are positive for MSC markers CD73, CD90 and CD105 while being negative for CD31, CD34, and CD45. This marker expression was quantified by mean fluorescent intensities (MFI) of three different donors and compared to the MFIs of kPSCs of the same donors (B). C) cMSCs are able to differentiate into cartilage, bone and fat. The latter was not observed in kPSCs. D) Growth characteristics of cMSCs. Abbreviations: cMSC: human kidney capsule-derived mesenchymal stromal cells. kPSC: kidney cortex-derived perivascular stromal cells. PDGFR-β: platelet-derived growth factor receptor beta, HLA: human leucocyte antigen, PD: population doubling. Scale bar 250μm.</p

    Clinical-grade isolated human kidney perivascular stromal cells as an organotypic cell source for kidney regenerative medicine

    No full text
    Mesenchymal stromal cells (MSCs) are immunomodulatory and tissue homeostatic cells that have shown beneficial effects in kidney diseases and transplantation. Perivascular stromal cells (PSCs) identified within several different organs share characteristics of bone marrow-derived MSCs (BM-MSCs). These PSCs may also possess tissue-specific properties and play a role in local tissue homeostasis. We hypothesized that human kidney-derived PSCs (hkPSCs) would elicit improved kidney repair in comparison with BM-MSCs. Here we introduce a novel, clinical-grade isolation method of hkPSCs from cadaveric kidneys by enriching for the perivascular marker, NG2. hkPSCs show strong transcriptional similarities to BM-MSCs but also show organotypic expression signatures, including the HoxD10 and HoxD11 nephrogenic transcription factors. Comparable to BM-MSCs, hkPSCs showed immunosuppressive potential and, when cocultured with endothelial cells, vascular plexus formation was supported, which was specifically in the hkPSCs accompanied by an increased NG2 expression. hkPSCs did not undergo myofibroblast transformation after exposure to transforming growth factor-β, further corroborating their potential regulatory role in tissue homeostasis. This was further supported by the observation that hkPSCs induced accelerated repair in a tubular epithelial wound scratch assay, which was mediated through hepatocyte growth factor release. In vivo, in a neonatal kidney injection model, hkPSCs reintegrated and survived in the interstitial compartment, whereas BM-MSCs did not show this potential. Moreover, hkPSCs gave protection against the development of acute kidney injury in vivo in a model of rhabdomyolysis-mediated nephrotoxicity. Overall, this suggests a superior therapeutic potential for the use of hkPSCs and their secretome in the treatment of kidney diseases
    corecore