341 research outputs found
Thermo-elasticity for anisotropic media in higher dimensions
In this note we develop tools to study the Cauchy problem for the system of
thermo-elasticity in higher dimensions. The theory is developed for general
homogeneous anisotropic media under non-degeneracy conditions.
For degenerate cases a method of treatment is sketched and for the cases of
cubic media and hexagonal media detailed studies are provided.Comment: 33 pages, 5 figure
Relaxation energies and excited state structures of poly(para-phenylene)
We investigate the relaxation energies and excited state geometries of the
light emitting polymer, poly(para-phenylene). We solve the
Pariser-Parr-Pople-Peierls model using the density matrix renormalization group
method. We find that the lattice relaxation of the dipole-active
state is quite different from that of the state and the
dipole-inactive state. In particular, the state is
rather weakly coupled to the lattice and has a rather small relaxation energy
ca. 0.1 eV. In contrast, the and states are strongly
coupled with relaxation energies of ca. 0.5 and ca. 1.0 eV, respectively. By
analogy to linear polyenes, we argue that this difference can be understood by
the different kind of solitons present in the , and
states. The difference in relaxation energies of the
and states accounts for approximately one-third of the exchange
gap in light-emitting polymers.Comment: Submitted to Physical Review
Traits and stress: keys to identify community effects of low levels of toxicants in test systems
Community effects of low toxicant concentrations are obscured by a multitude of confounding factors. To resolve this issue for community test systems, we propose a trait-based approach to detect toxic effects. An experiment with outdoor stream mesocosms was established 2-years before contamination to allow the development of biotic interactions within the community. Following pulse contamination with the insecticide thiacloprid, communities were monitored for additional 2 years to observe long-term effects. Applying a priori ecotoxicological knowledge species were aggregated into trait-based groups that reflected stressor-specific vulnerability of populations to toxicant exposure. This reduces inter-replicate variation that is not related to toxicant effects and enables to better link exposure and effect. Species with low intrinsic sensitivity showed only transient effects at the highest thiacloprid concentration of 100 μg/l. Sensitive multivoltine species showed transient effects at 3.3 μg/l. Sensitive univoltine species were affected at 0.1 μg/l and did not recover during the year after contamination. Based on these results the new indicator SPEARmesocosm was calculated as the relative abundance of sensitive univoltine taxa. Long-term community effects of thiacloprid were detected at concentrations 1,000 times below those detected by the PRC (Principal Response Curve) approach. We also found that those species, characterised by the most vulnerable trait combination, that were stressed were affected more strongly by thiacloprid than non-stressed species. We conclude that the grouping of species according to toxicant-related traits enables identification and prediction of community response to low levels of toxicants and that additionally the environmental context determines species sensitivity to toxicants
Two-photon absorption spectra of luminescent conducting polymers measured over wide spectral range
Optical Science, Engineering and Instrumentation '97, 1997, San Diego, CA, United StatesRon K. Meyer, Martin Liess, Robert E. Benner, Werner Gellermann, Z. Valy Vardeny, Masanori Ozaki, Katsumi Yoshino, Yi Wei Ding, and Thomas J. Barton "Two-photon absorption spectra of luminescent conducting polymers measured over wide spectral range", Proc. SPIE 3145, Optical Probes of Conjugated Polymers, (1 December 1997). DOI: https://doi.org/10.1117/12.27927
A theoretical investigation of the low lying electronic structure of poly(p-phenylene vinylene)
The two-state molecular orbital model of the one-dimensional phenyl-based
semiconductors is applied to poly(p-phenylene vinylene). The energies of the
low-lying excited states are calculated using the density matrix
renormalization group method. Calculations of both the exciton size and the
charge gap show that there are both Bu and Ag excitonic levels below the band
threshold. The energy of the 1Bu exciton extrapolates to 2.60 eV in the limit
of infinite polymers, while the energy of the 2Ag exciton extrapolates to 2.94
eV. The calculated binding energy of the 1Bu exciton is 0.9 eV for a 13
phenylene unit chain and 0.6 eV for an infinite polymer. This is expected to
decrease due to solvation effects. The lowest triplet state is calculated to be
at ca. 1.6 eV, with the triplet-triplet gap being ca. 1.6 eV. A comparison
between theory, and two-photon absorption and electroabsorption is made,
leading to a consistent picture of the essential states responsible for most of
the third-order nonlinear optical properties. An interpretation of the
experimental nonlinear optical spectroscopies suggests an energy difference of
ca. 0.4 eV between the vertical energy and ca. 0.8 eV between the relaxed
energy, of the 1Bu exciton and the band gap, respectively.Comment: LaTeX, 19 pages, 7 eps figures included using epsf. To appear in
Physical Review B, 199
Round table on morbilliviruses in marine mammals.
Since 1988 morbilliviruses have been increasingly recognized and held responsible for mass mortality amongst harbour seals (Phoca vitulina) and other seal species. Virus isolations and characterization proved that morbilliviruses from seals in Northwest Europe were genetically distinct from other known members of this group including canine distemper virus (CDV), rinderpest virus, peste des petits ruminants virus and measles virus. An epidemic in Baikal seals in 1987 was apparently caused by a morbillivirus closely related to CDV so that two morbilliviruses have now been identified in two geographically distant seal populations, with only the group of isolates from Northwest Europe forming a new member of the genus morbillivirus: phocid distemper virus (PDV). Because of distemper-like disease, the Baikal seal morbillivirus was tentatively named PDV-2 in spite of its possible identity with CDV. The appearance of morbilliviruses in the Mediterranean Sea causing high mortality amongst dolphins should further increase the research activities on protection strategies for endangered species of marine mammals
Theory of nonlinear optical properties of phenyl-substituted polyacetylenes
In this paper we present a theoretical study of the third-order nonlinear
optical properties of poly(diphenyl)polyacetylene (PDPA) pertaining to the
third-harmonic-generation (THG) process. We study the aforesaid process in
PDPA's using both the independent electron Hueckel model, as well as
correlated-electron Pariser-Parr-Pople (P-P-P) model. The P-P-P model based
calculations were performed using various configuration interaction (CI)
methods such as the the multi-reference-singles-doubles CI (MRSDCI), and the
quadruples-CI (QCI) methods, and the both longitudinal and the transverse
components of third-order susceptibilities were computed. The Hueckel model
calculations were performed on oligo-PDPA's containing up to fifty repeat
units, while correlated calculations were performed for oligomers containing up
to ten unit cells. At all levels of theory, the material exhibits highly
anisotropic nonlinear optical response, in keeping with its structural
anisotropy. We argue that the aforesaid anisotropy can be divided over two
natural energy scales: (a) the low-energy response is predominantly
longitudinal and is qualitatively similar to that of polyenes, while (b) the
high-energy response is mainly transverse, and is qualitatively similar to that
of trans-stilbene.Comment: 13 pages, 7 figures (included), to appear in Physical Review B (April
15, 2004
- …