13 research outputs found
Prevalence of PIK3CA mutations in Taiwanese patients with breast cancer: a retrospective next-generation sequencing database analysis
BackgroundBreast cancer is the most common cancer type that affects women. In hormone receptor–positive (HR+), human epidermal growth factor receptor 2−negative (HER2–) advanced breast cancer (ABC), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) is the most frequently mutated gene associated with poor prognosis. This study evaluated the frequency of PIK3CA mutations in the Taiwanese breast cancer population.MethodologyThis is a retrospective study; patient data were collected for 2 years from a next-generation sequencing database linked to electronic health records (EHRs). The primary endpoint was the regional prevalence of PIK3CA mutation. The secondary endpoints were to decipher the mutation types across breast cancer subtype, menopausal status, and time to treatment failure after everolimus (an mTOR inhibitor) or cyclin-dependent kinase 4/6 (CDK4/6) inhibitor treatment.ResultsPIK3CA mutations were identified in 278 of 728 patients (38%). PIK3CA mutations were reported in 43% of patients with HR−/HER2+ subtype and 42% of patients with HR+/HER2– postmenopausal status. A lower prevalence of PIK3CA mutations was observed in triple-negative (27%) and HR+/HER2– premenopausal patients (29%). The most common mutation was at exon 20 (H1047R mutation, 41.6%), followed by exon 9 (E545K mutation, 18.9% and E542K mutation, 10.3%). Among patients treated with CDK4/6 inhibitors, the median time to treatment failure was 12 months (95% CI: 7-21 months) in the PIK3CA mutation cohort and 16 months (95% CI: 11-23 months) in the PIK3CA wild-type cohort, whereas patients receiving an mTOR inhibitor reported a median time to treatment failure of 20.5 months (95% CI: 8-33 months) in the PIK3CA mutation cohort and 6 months (95% CI: 2-9 months) in the PIK3CA wild-type cohort.ConclusionA high frequency of PIK3CA mutations was detected in Taiwanese patients with breast cancer, which was consistent with previous studies. Early detection of PIK3CA mutations might influence therapeutic decisions, leading to better treatment outcomes
A simplified scoring model for predicting bacteremia in the unscheduled emergency department revisits: The SADFUL score
Background: Bacteremia is a severe complication of infectious disease. Patients with a high bacteremia risk in the emergency department (ED) but misidentified would lead to the unscheduled revisits. This study aimed to develop a simplified scoring model to predict bacteremia in patients with unscheduled ED revisits. Methods: Adult patients with unscheduled ED revisits within 72 h with a final diagnosis of infectious disease were retrospectively included. The development cohort included patients visiting the ED from January 1, 2019 to December 31, 2021. Internal validation was performed in patients visiting the ED from January 1, 2022 to March 31, 2022. Variables including demographics, pre-comorbidities, triage levels, vital signs, chief complaints, and laboratory data in the index visit were analyzed. Bacteremia was the primary outcome determined by blood culture in either index visits or revisits. Results: The SADFUL score for predicting bacteremia comprised the following predictors: “S”egmented neutrophil percentage (+3 points), “A”ge > 55 years (+1 point), “D”iabetes mellitus (+1 point), “F”ever (+2 points), “U”pper respiratory tract symptoms (−2 points), and “L”eukopenia (2 points). The area under receiver operating characteristic curve with 95% confidence interval in the development (1802 patients, 190 [11%] with bacteremia) and the validation cohort (134 patients, 17 [13%] with bacteremia) were 0.78 (0.74–0.81) and 0.79 (0.71–0.88), respectively. Conclusions: The SADFUL score is a simplified useful tool for predicting bacteremia in patients with unscheduled ED revisits. The scoring model could help ED physicians decrease misidentification of patients at a high risk for bacteremia and potential complications
Cellular mechanisms underlying central sensitization in a mouse model of chronic muscle pain
Chronic pain disorders are often associated with negative emotions, including anxiety and depression. The central nucleus of the amygdala (CeA) has emerged as an integrative hub for nociceptive and affective components during central pain development. Prior adverse injuries are precipitating factors thought to transform nociceptors into a primed state for chronic pain. However, the cellular basis underlying the primed state and the subsequent development of chronic pain remains unknown. Here, we investigated the cellular and synaptic alterations of the CeA in a mouse model of chronic muscle pain. In these mice, local infusion of pregabalin, a clinically approved drug for fibromyalgia and other chronic pain disorders, into the CeA or chemogenetic inactivation of the somatostatin-expressing CeA (CeA-SST) neurons during the priming phase prevented the chronification of pain. Further, electrophysiological recording revealed that the CeA-SST neurons had increased excitatory synaptic drive and enhanced neuronal excitability in the chronic pain states. Finally, either chemogenetic inactivation of the CeA-SST neurons or pharmacological suppression of the nociceptive afferents from the brainstem to the CeA-SST neurons alleviated chronic pain and anxio-depressive symptoms. These data raise the possibility of targeting treatments to CeA-SST neurons to prevent central pain sensitization
Correlation of an immune-related 8-gene panel with pathologic response to neoadjuvant chemotherapy in patients with primary breast cancers
Neoadjuvant chemotherapy (NACT)-induced pathologic complete response (pCR) is associated with a favorable prognosis for breast cancer. Prior research links tumor-infiltrating lymphocytes with breast cancer chemotherapy response, suggesting the tumor-immune microenvironment's role. The aim of this study was to evaluate the immune-related genes that exhibit associations with the response to NACT. In this study, we analyzed a total of 37 patients (aged 27–67) who received NACT as the first-line treatment for primary breast cancer, followed by surgery. This group consisted of nine patients (24.3 %) with estrogen receptor (ER)-positive/HER2-negative status, ten patients (27.0 %) with ER-positive/HER2-positive status, five patients (13.5 %) with ER-negative/HER2-positive status, and thirteen patients (35.1 %) with triple-negative breast cancer (TNBC). Among these patients, twelve (32.4 %) achieved a pCR, with eight (66.6 %) having HER2-positive tumors, and the remaining four having TNBC. To identify immune-related genes linked with pCR in subjects with breast cancer prior to NACT, we collected fresh tissues for next-generation sequencing. Patients with pCR had higher expressions of eight genes, KLRK1, IGJ, CD69, CD40LG, MS4A1, CD1C, KLRB1, and CA4, compared to non-pCR patients. The 8-gene signature was associated with good prognosis and linked to better relapse-free survival in patients receiving chemotherapy. The expression of these genes was involved in better drug response, displaying a positive correlation with the infiltration of immune cells. In conclusion, we have identified eight immune-related genes that are associated with a favorable prognosis and positive responses to drugs. This 8-gene signature could potentially provide prognostic insights for breast cancer patients undergoing NACT
Concordance of Targeted Sequencing from Circulating Tumor DNA and Paired Tumor Tissue for Early Breast Cancer
In this study, we evaluated the concordance of targeted sequencing between paired ctDNA and matched tumor samples from early breast cancers treated with curative intention. Molecular profiling was performed using the Oncomine Comprehensive Assay v3 and the Oncomine Breast cfDNA Assay v2. The liquid biopsy detection rate was 39% (all-stage breast cancers, n = 612). Among 246 early-stage patients assayed for both ctDNA and matched tumor, the cfDNA assay detected 73 (29.6%) and the comprehensive assay detected 201 (81.7%) breast cancers with at least one alteration (χ2 test, p = 0.001). In total, 67 (25.6%) cases tested positive on both platforms, while the cfDNA and comprehensive assays detected an additional 10 (4%) and 138 (56%) cases, respectively. The most prevalent mutant genes were TP53 (68.3%) and KRAS (53.5%), while the PIK3CA (39.4%), AKT1 (45.9%), and ERBB2 (17.1%) mutations constituted biomarkers for FDA-approved therapeutics. Our study showed that tumor tissue should be the source of actionable mutation detection for early breast cancers, considering that the concordance rate between tumor and liquid biopsy was only one-quarter