33 research outputs found

    Optimal Selection of Number and Location of Meteo-Hydrological Monitoring Networks on Vu Gia – Thu Bon River Basin using GIS

    Get PDF
    Meteorological data play a particularly important role in hydrologic research because the climate and weather of an area exert a profound influence on most hydrologic processes. Meanwhile, hydrological data are critical for performing a range of purposes, including water resources assessment, impacts of climate change and flood forecasting and warning. It can be said that the prevention of disasters caused by floods and droughts would be impossible without rational forecasting technology based on an understanding of the rainfall-runoff phenomenon and statistical analysis of past hydrological data, which cannot be achieved without meteo-hydrological observations. The lack of adequate meteo-hydrological data affects the ability to model, predict and plan for catastrophic events such as floods and droughts which have obvious negative impacts on public health and socio-economic aspects. The accurate estimation of the spatial distribution of meteorological and hydrological parameters requires a dense network of instruments, which entails large installation and operational costs. It is thus necessary to optimize the number and location of meteo-hydrological stations. This paper presents a GIS-based approach to establishing an optimal meteo-hydrological station network on Vu Gia- Thu Bon river basin for developing an up-to-date real time flood warning system. Based on statistical analysis of the annual rainfall total data at 9 existing gauges in the study area from 1980 to 2013, it showed that the error of the existing network was about 7.47%. Considering 9 rain gauges as a standard representative of rainfall over the region, if the error decreases from 7.47% to 5%, the number of additional rain gauges should be 20. For adequate and economical network design, these additional rain gauges were spatially distributed between the different isohyetals after considering the relative distances between rain gauges, their accessibility, personnel required for making observations using multi-layers analysis and spatial interpolation. For hydrological stations, based on consideration existing network with the requirements set out by the flood warning system, the number of stations should be five. In terms of spatial distribution, three stations were distributed across two main tributaries of Vu Gia- Thu Bon river basin, behind the dams for water discharge calibration and the others were located on downstream for water stage calibration. The results of the study provided a scientific approach can be applied to optimizing the meteo-hydrological station network over the river basin

    A Study Of UV-curable Offset Ink Emulsified With An Alternative Isopropyl Alcohol-free Fountain Solution

    Get PDF
    In the present research, fountain solution without isopropyl alcohol (IPA) for Ultraviolet offset curing ink (UV ink) was prepared by using Ethylene Glycol Mono-butyl Ether (EGME) as a substitute for IPA. The effect of EGME concentration on the water pick-up characteristics, tack value, rheological behaviors, and curing time of UV offset inks was investigated. Water pick-up characteristics, tack value and rheological behaviors were measured by Duke Ink water emulsification tester, Tack-o-scope and cone-plate rheometer, respectively. The curing time of the UV ink was evaluated by the rub test of printed sheet samples proofed on the polymer film at the standard solid ink density and the same ink thickness. The results revealed that an increase in EGME concentration increased the water pick-up characteristics of the UV ink. There was no significant influence of EGME on the tack value of UV inks. However, the tack value of UV ink was significantly affected by fountain concentration in UV inks and UV ink color. The addition of EGME reduced the dynamic viscosity and thixotropic property of UV inks but did not change the flow behavior of UV ink as shear thinning. This study indicates that UV ink emulsified with a higher EGME concentration fountain solution needs a longer curing time. The cyan UV ink has the longest curing time. Finally, the fountain solution of 10% EGME exhibited good performance in water pick-up characteristics, tack value, rheological behaviors, and curing time of UV inks

    Light Absorption and Luminescence Properties of the Blend Poly(N-vinylcarbazole)/Poly(N-hexylthiophene)

    Get PDF
    We have investigated the enhancement absorption light and luminescence properties of the blend conducting polymers using poly(N-vinylcarbazole) and poly(N-hexylthiophene). The optimized material showed a broad absorption in the region of ultra violet to near infra-red and the better of luminescence ability than the pristine conducting polymers. The remarkable improvements in photoluminescences of the blends provide useful information to the application of this material in fabrication of optical – electronic devices.

    Long short-term memory (LSTM) neural networks for short-term water level prediction in Mekong river estuaries

    Get PDF
    This study firstly adopts a state-of-the-art deep learning approach based on a Long Short-Term Memory (LSTM) neural network for predicting the hourly water level of Mekong estuaries in Vietnam. The LSTM models were developed from around 8,760 hourly data points within 2018 and were evaluated using the Nash-Sutcliffe efficiency coefficient (NSE), mean absolute error (MAE), and root mean square error (RMSE). The results showed that the NSE values for the training and testing steps were both above 0.98, which can be regarded as very good performance. Furthermore, the RMSE were between 0.09 and 0.11 m for the training and between 0.10 and 0.12 m for the testing, while MAE for the training ranged from 0.07 to 0.08 m and varied from 0.08 to 0.10 m for the testing. The LSTM networks appear to enable high precision and robustness in water level time series prediction. The outcomes of this research have crucial implications in river water level predictions, especially from the viewpoint of employing deep learning algorithms

    Targeted next-generation sequencing on hirschsprung disease: A pilot study exploits DNA pooling

    Get PDF
    To adopt an efficient approach of identifying rare variants possibly related to Hirschsprung disease (HSCR), a pilot study was set up to evaluate the performance of a newly designed protocol for next generation targeted resquencing. In total, 20 Chinese HSCR patients and 20 Chinese sex-matched individuals with no HSCR were included, for which coding sequences (CDS) of 62 genes known to be in signaling pathways relevant to enteric nervous system development were selected for capture and sequencing. Blood DNAs from eight pools of five cases or controls were enriched by PCR-based RainDance technology (RDT) and then sequenced on a 454 FLX platform. As technical validation, five patients from case Pool-3 were also independently enriched by RDT, indexed with barcode and sequenced with sufficient coverage. Assessment for CDS single nucleotide variants showed DNA pooling performed well (specificity/sensitivity at 98.4%/83.7%) at the common variant level; but relatively worse (specificity/sensitivity at 65.5%/61.3%) at the rare variant level. Further Sanger sequencing only validated five out of 12 rare damaging variants likely involved in HSCR. Hence more improvement at variant detection and sequencing technology is needed to realize the potential of DNA pooling for large-scale resequencing projects. © 2014 John Wiley & Sons Ltd/University College London.postprin

    Effect of land use change on water discharge in Srepok watershed, Central Highland, Viet Nam

    Get PDF
    Srepok watershed plays an important role in Central Highland in Viet Nam. It impacts to developing social-economic conditions. Therefore, it is necessary to research elements which impact to natural resources in this watershed. The Soil and Water Assessment Tool (SWAT) model and Geography Information System (GIS) were used to simulate water discharge in the Srepok watershed. The objectives of the research were to apply GIS and SWAT model for simulation water discharge and then, we assessed land use change which impacted on water discharge in the watershed. The observed stream flow data from Ban Don Stream gauge station was used to calibrate for the period from 1981 to 2000 and then validate for the period from 2001 to 2009. After using SWAT-CUP software to calibration, NSI reached 0.63 and R square value achieved 0.64 from 2004 to 2008 in calibration and NSI gained good level at 0.74 and R square got 0.75 from 2009 to 2012 in validation step at Ban Don Station. After that, land cover in 2010 was processed like land cover in 2000 and set up SWAT model again. The simulated water discharge in scenario 1 (land use 2000) was compared with scenario 2 (land use 2010), the simulation result was not significant difference between two scenarios because the change of area of land use was not much enough to affect the fluctuation of water discharge. However, the effect of land cover on water resource could be seen clearly via total water yield. The percentage of surface flow in 2000 was twice times more than in 2010; retard and base flow in 2000 was slightly more than in 2010. Therefore, decreased surface flow, increased infiltration capacity of water and enriched base flow resulted in the growth of land cover

    Expression and phosphorylation of the protein synthesis. Elongation factor Tu in differentiating Streptomyces.

    No full text
    Available from STL Prague, CZ / NTK - National Technical LibrarySIGLECZCzech Republi

    Enhancing Damage-Sensing Capacity of Strain-Hardening Macro-Steel Fiber-Reinforced Concrete by Adding Low Amount of Discrete Carbons

    No full text
    The effects of adding micro-carbon fibers on the electro-mechanical response of macro-steel fiber-reinforced concretes (MSFRCs) under tension were investigated. Two MSFRCs were investigated and they had identical mortar matrix but different fiber contents: MSFRC1 and MSFRC2 contained 1.0 and 1.5 vol.% fibers, respectively. The volume contents of added micro-carbon fibers were 0 to 1.5 vol.% in MSFRC1 and 0 to 0.75 vol.% in MSFRC2, respectively. The addition of 0.5 vol.% micro-carbon fibers, in both MSFRC1 and MSFRC2, produced significantly enhanced damage-sensing capability and still retained their strain-hardening performance together with multiple micro cracks. However, when the content of carbon fibers was more than 0.5 vol.%, the MSFRCs generated tensile strain-softening behavior and reduced damage-sensing capability. Furthermore, the effects of temperature and humidity on the electrical resistivity of MSFRCs were investigated, as were the effects of adding multi-walled carbon nanotubes on the damage-sensing capability of MSFRCs

    Investigation on Compressive Characteristics of Steel-Slag Concrete

    No full text
    The compressive characteristics of the steel-slag concrete were investigated through an experimental test. The term “steel-slag concrete” in this research work was defined as a kind of concrete using steel-slag material as a coarse aggregate replacement. Three types of the steel-slag concretes were examined under compression as follows: XT01, XT02, XT03 with their cement/water ratios of 1.76, 2.00, 2.21, respectively. The coarse aggregate used in producing concrete was steel-slag material, while the fine aggregate was traditional river sand; the ratio of coarse aggregate to fine aggregate was kept constant at a value of 1.98. Firstly, the age-dependent compressive strength of the steel-slag concretes were investigated up to one year; it was clear that the concrete strength increased rapidly in 7 days, then more and more slowly after that. Secondly, the modulus of elasticity and Poisson’s ratio of the steel-slag concretes were explored at the 28-day age. Thirdly, there was an important size and shape effect on the compressive strength of the XT02, and its significance of brittleness in failure was analytically analyzed. Lastly, the effects of water amount added in the XT02 on its compressive strength and slump were evaluated at the 28-day age

    Dioctyl Phthalate-Modified Graphene Nanoplatelets: An Effective Additive for Enhanced Mechanical Properties of Natural Rubber

    No full text
    Graphene has been extensively considered an ideal additive to improve the mechanical properties of many composite materials, including rubbers, because of its novel strength, high surface area, and remarkable thermal and electron conductivity. However, the pristine graphene shows low dispersibility in the rubber matrix resulting in only slightly enhanced mechanical properties of the rubber composite. In this work, graphene nanoplatelets (GNPs) were modified with dioctyl phthalate (DOP) to improve the dispersibility of the graphene in the natural rubber (NR). The distribution of the DOP-modified GNPs in the NR matrix was investigated using scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. The effect of the modified GNPs’ contents on the mechanical properties of the GNPs/NR composite was studied in detail. The results showed that the abrasion resistance of the graphene-reinforced rubber composite significantly improved by 10 times compared to that of the rubber without graphene (from 0.3 to 0.03 g/cycle without and with addition of the 0.3 phr modified GNPs). The addition of the modified GNPs also improved the shear and tensile strength of the rubber composite. The tensile strength and shear strength of the NR/GNPs composite with a GNPs loading of 0.3 phr were determined to be 23.63 MPa and 42.69 N/mm, respectively. Even the presence of the graphene reduced the other mechanical properties such as Shore hardness, elongation at break, and residual elongation; however, these reductions were negligible, which still makes the modified GNPs significant as an effective additive for the natural rubber in applications requiring high abrasion resistance
    corecore