15 research outputs found

    In vitro und in vivo Untersuchungen zur Anwendung nicht-thermischen Plasmas in der Behandlung des fortgeschrittenen Pankreaskarzinoms

    Get PDF
    Das fortgeschrittene, metastasierte Pankreaskarzinom stellt allen Fortschritten innerhalb der Onkologie zum Trotz weiterhin eine Diagnose mit infauster Prognose dar, deren palliative Therapiemöglichkeiten ebenfalls nicht zufriedenstellend sind. Seit einigen Jahren besteht die Hoffnung den vierten Aggregatzustand in Form von ‚nicht-thermischem Plasma' (NTP) in der modernen Tumortherapie einzusetzen. Dies beruht auf der Generierung zahlreicher reaktiver Sauerstoff- und Stickstoffspezies, die in der Balance aus Wachstum und Apoptose von Tumoren eine entscheidende Rolle einnehmen. In Zusammenschau aller im Rahmen dieser Arbeit erhobenen in vitro Ergebnisse und der hierzu einsehbaren Literatur lässt sich eine selektive, anti-tumoröse Wirkung von NTP festhalten, die sich in reduzierter Zellviabilität und -proliferation, sowie effektiver Apoptoseinduktion ohne Bildung von Nekrosen äußert. Diese Effekte werden vorrangig über im Medium gelöste reaktive Sauerstoff- und Stickstoffspezies vermittelt, sodass auch zellfreie, NTP-behandelte Flüssigkeit diese Wirkung erzielt. In einem syngenen Mausmodell einer Peritonealkarzinose des Pankreaskarzinoms konnten die antiproliferativen und proapototischen Effekte dieser indirekten NTP-Behandlung nachgestellt werden. Die repetitive intraperitoneale Applikation resultierte in einer signifikanten Reduktion der Tumoren hinsichtlich Anzahl, Größe und Gewicht. Dabei zeigte sich eine beachtliche effektive Eindringtiefe innerhalb der Tumorläsionen. Lokale oder systemische Nebenwirkungen konnten unter der Therapie nicht beobachtet werden, insbesondere wiesen die übrigen aufgearbeiteten intraperitonealen Gewebe keine makro- oder mikroskopisch sichtbaren Veränderungen auf und auch die Blutzusammensetzung zeigte sich unverändert gegenüber der Kontrollgruppe. In dieser Arbeit wurde zudem - nach Kenntnisstand des Autors - erstmals der Einfluss einer indirekten NTP-Behandlung auf das Überleben immunkompetenter, Tumor-tragender Mäuse untersucht und hierbei ein signifikanter Überlebensvorteil demonstriert. Die präsentierte Arbeit stellt einen wichtigen Schritt in der Entwicklung neuer Therapieoptionen des metastasierten Pankreaskarzinoms dar, als dass die selektive in vitro Wirksamkeit von NTP nun auch in vivo in einem komplexen Organismus wie der immunkompetenten Maus nachgestellt werden konnte. Künftige Arbeiten zu den NTP-Regulationsmöglichkeiten durch Flüssigkeits- und Plasmamodifikationen werden mutmaßlich das vollständige Potential dieses neuartigen Therapieansatzes offenbaren.Advanced or metastatic pancreatic cancer, despite all advances in oncology, continues to be a diagnosis with an unfavorable prognosis whose palliative treatment options are also unsatisfactory. For some years, the hope has been to use the fourth state of aggregation in the form of 'non-thermal plasma' (NTP) in modern tumor therapy. This is due to the generation of numerous reactive oxygen and nitrogen species, which play a crucial role in the balance of growth and apoptosis of tumors. In summary of all in vitro data obtained in this work, a selective antitumor effect of NTP on murine pancreatic adenocarcinoma cells can be observed, which is expressed in reduced cell viability and proliferation as well as effective induction of apoptosis without formation of necroses. These effects are primarily mediated by reactive oxygen and nitrogen species dissolved in the medium, so that even cell-free, NTP-treated liquid achieves this effect. In addition, murine fibroblasts demonstrate significantly higher resistance to NTP treatment. In a syngeneic mouse model of peritoneal carcinomatosis of pancreatic cancer, the antiproliferative and proapototic effects of this indirect NTP treatment have been reconstructed. The repetitive intraperitoneal administration resulted in a significant reduction of the number, size and weight of the tumors with a considerable effective penetration depth (> 200 μm) within the tumor lesions. Following therapy, no local or systemic side effects could be observed, in particular reprocessed non-malignant intraperitoneal tissues showed no macro- or microscopic visible changes and also the blood composition was unchanged compared to the control group. According to the author's knowledge, in this work the influence of indirect NTP treatment on the survival of immunocompetent, tumor-bearing mice was investigated for the first time, demonstrating a significant survival advantage (62 days vs. 52 days). This work represents an important step in the development of new treatment options for metastatic pancreatic adenocarcinoma, as the selective efficacy of NTP in vitro could now also be replicated in vivo in a complex organism such as the immunocompetent mouse. Future work on the possibilities to regulate NTP via fluid and plasma modifications is likely to reveal the full potential of this novel therapeutic approach

    Gas Plasma-Conditioned Ringer’s Lactate Enhances the Cytotoxic Activity of Cisplatin and Gemcitabine in Pancreatic Cancer In Vitro and In Ovo

    Get PDF
    Pancreatic cancer is one of the most aggressive tumor entities. Diffuse metastatic infiltration of vessels and the peritoneum restricts curative surgery. Standard chemotherapy protocols include the cytostatic drug gemcitabine with limited efficacy at considerable toxicity. In search of a more effective and less toxic treatment modality, we tested in human pancreatic cancer cells (MiaPaca and PaTuS) a novel combination therapy consisting of cytostatic drugs (gemcitabine or cisplatin) and gas plasma-conditioned Ringer’s lactate that acts via reactive oxygen species. A decrease in metabolic activity and viability, change in morphology, and cell cycle arrest was observed in vitro. The combination treatment was found to be additively toxic. The findings were validated utilizing an in ovo tumor model of solid pancreatic tumors growing on the chorionallantois membrane of fertilized chicken eggs (TUM-CAM). The combination of the drugs (especially cisplatin) with the plasma-conditioned liquid significantly enhanced the anti-cancer effects, resulting in the induction of cell death, cell cycle arrest, and inhibition of cell growth with both of the cell lines tested. In conclusion, our novel combination approach may be a promising new avenue to increase the tolerability and efficacy of locally applied chemotherapeutic in diffuse metastatic peritoneal carcinomatosis of the pancreas. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Identification of Two Kinase Inhibitors with Synergistic Toxicity with Low-Dose Hydrogen Peroxide in Colorectal Cancer Cells In vitro

    Get PDF
    Colorectal carcinoma is among the most common types of cancers. With this disease, diffuse scattering in the abdominal area (peritoneal carcinosis) often occurs before diagnosis, making surgical removal of the entire malignant tissue impossible due to a large number of tumor nodules. Previous treatment options include radiation and its combination with intraperitoneal heat-induced chemotherapy (HIPEC). Both options have strong side effects and are often poor in therapeutic efficacy. Tumor cells often grow and proliferate dysregulated, with enzymes of the protein kinase family often playing a crucial role. The present study investigated whether a combination of protein kinase inhibitors and low-dose induction of oxidative stress (using hydrogen peroxide, H2O2) has an additive cytotoxic effect on murine, colorectal tumor cells (CT26). Protein kinase inhibitors from a library of 80 substances were used to investigate colorectal cancer cells for their activity, morphology, and immunogenicity (immunogenic cancer cell death, ICD) upon mono or combination. Toxic compounds identified in 2D cultures were confirmed in 3D cultures, and additive cytotoxicity was identified for the substances lavendustin A, GF109203X, and rapamycin. Toxicity was concomitant with cell cycle arrest, but except HMGB1, no increased expression of immunogenic markers was identified with the combination treatment. The results were validated for GF109203X and rapamycin but not lavendustin A in the 3D model of different colorectal (HT29, SW480) and pancreatic cancer cell lines (MiaPaca, Panc01). In conclusion, our in vitro data suggest that combining oxidative stress with chemotherapy would be conceivable to enhance antitumor efficacy in HIPEC. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Decontaminative Properties of Cold Atmospheric Plasma Treatment on Collagen Membranes Used for Guided Bone Regeneration

    Get PDF
    Background cold atmospheric plasma (CAP) is known to be a surface-friendly yet antimicrobial and activating process for surfaces such as titanium. The aim of the present study was to describe the decontaminating effects of CAP on contaminated collagen membranes and their influence on the properties of this biomaterial in vitro. Material and Methods: A total of n = 18 Bio-Gide® (Geistlich Biomaterials, Baden-Baden, Germany) membranes were examined. The intervention group was divided as follows: n = 6 membranes were treated for one minute, and n = 6 membranes were treated for five minutes with CAP using kINPen® MED (neoplas tools GmbH, Greifswald, Germany) with an output of 5 W, respectively. A non-CAP-treated group (n = 6) served as the control. The topographic alterations were evaluated via X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Afterward, the samples were contaminated with E. faecalis for 6 days, and colony-forming unit (CFU) counts and additional SEM analyses were performed. The CFUs increased with CAP treatment time in our analyses, but SEM showed that the surface of the membranes was essentially free from bacteria. However, the deeper layers showed remaining microbial conglomerates. Furthermore, we showed, via XPS analysis, that increasing the CAP time significantly enhances the carbon (carbonyl group) concentration, which also correlates negatively with the decontaminating effects of CAP. Conclusions: Reactive carbonyl groups offer a potential mechanism for inhibiting the growth of E. faecalis on collagen membranes after cold atmospheric plasma treatment

    A Novel Surface Modification Strategy via Photopolymerized Poly-Sulfobetaine Methacrylate Coating to Prevent Bacterial Adhesion on Titanium Surfaces

    Get PDF
    Recent investigations on the anti-adhesive properties of polysulfobetaine methacrylate (pSBMA) coatings had shown promising potential as antifouling surfaces and have given the impetus for the present paper, where a pSBMA coating is applied via photopolymerization on a macro-roughened, sandblasted, and acid-etched titanium implant surface in order to assess its antifouling properties. Current emphasis is placed on how the coating is efficient against the adhesion of Enterococcus faecalis by quantitative assessment of colony forming units and qualitative investigation of fluorescence imaging and scanning electron microscopy. pSBMA coatings via photopolymerization of titanium surfaces seems to be a promising antiadhesion strategy, which should bring substantial benefits once certain aspects such as biodegradation and osseointegration were addressed. Additionally, commercial SAL-titanium substrates may be coated with the super-hydrophilic coating, appearing resistant to physiological salt concentrations and most importantly lowering E. faecalis colonization significantly, compared to titanium substrates in the as-received state. It is very likely that pSBMA coatings may also prevent the adhesion of other germs
    corecore