15 research outputs found
In vitro und in vivo Untersuchungen zur Anwendung nicht-thermischen Plasmas in der Behandlung des fortgeschrittenen Pankreaskarzinoms
Das fortgeschrittene, metastasierte Pankreaskarzinom stellt allen Fortschritten innerhalb der Onkologie zum Trotz weiterhin eine Diagnose mit infauster Prognose dar, deren palliative Therapiemöglichkeiten ebenfalls nicht zufriedenstellend sind. Seit einigen Jahren besteht die Hoffnung den vierten Aggregatzustand in Form von ‚nicht-thermischem Plasma' (NTP) in der modernen Tumortherapie einzusetzen. Dies beruht auf der Generierung zahlreicher reaktiver Sauerstoff- und Stickstoffspezies, die in der Balance aus Wachstum und Apoptose von Tumoren eine entscheidende Rolle einnehmen. In Zusammenschau aller im Rahmen dieser Arbeit erhobenen in vitro Ergebnisse und der hierzu einsehbaren Literatur lässt sich eine selektive, anti-tumoröse Wirkung von NTP festhalten, die sich in reduzierter Zellviabilität und -proliferation, sowie effektiver Apoptoseinduktion ohne Bildung von Nekrosen äußert. Diese Effekte werden vorrangig über im Medium gelöste reaktive Sauerstoff- und Stickstoffspezies vermittelt, sodass auch zellfreie, NTP-behandelte Flüssigkeit diese Wirkung erzielt. In einem syngenen Mausmodell einer Peritonealkarzinose des Pankreaskarzinoms konnten die antiproliferativen und proapototischen Effekte dieser indirekten NTP-Behandlung nachgestellt werden. Die repetitive intraperitoneale Applikation resultierte in einer signifikanten Reduktion der Tumoren hinsichtlich Anzahl, Größe und Gewicht. Dabei zeigte sich eine beachtliche effektive Eindringtiefe innerhalb der Tumorläsionen. Lokale oder systemische Nebenwirkungen konnten unter der Therapie nicht beobachtet werden, insbesondere wiesen die übrigen aufgearbeiteten intraperitonealen Gewebe keine makro- oder mikroskopisch sichtbaren Veränderungen auf und auch die Blutzusammensetzung zeigte sich unverändert gegenüber der Kontrollgruppe. In dieser Arbeit wurde zudem - nach Kenntnisstand des Autors - erstmals der Einfluss einer indirekten NTP-Behandlung auf das Überleben immunkompetenter, Tumor-tragender Mäuse untersucht und hierbei ein signifikanter Überlebensvorteil demonstriert.
Die präsentierte Arbeit stellt einen wichtigen Schritt in der Entwicklung neuer Therapieoptionen des metastasierten Pankreaskarzinoms dar, als dass die selektive in vitro Wirksamkeit von NTP nun auch in vivo in einem komplexen Organismus wie der immunkompetenten Maus nachgestellt werden konnte. Künftige Arbeiten zu den NTP-Regulationsmöglichkeiten durch Flüssigkeits- und Plasmamodifikationen werden mutmaßlich das vollständige Potential dieses neuartigen Therapieansatzes offenbaren.Advanced or metastatic pancreatic cancer, despite all advances in oncology, continues to be a diagnosis with an unfavorable prognosis whose palliative treatment options are also unsatisfactory. For some years, the hope has been to use the fourth state of aggregation in the form of 'non-thermal plasma' (NTP) in modern tumor therapy. This is due to the generation of numerous reactive oxygen and nitrogen species, which play a crucial role in the balance of growth and apoptosis of tumors.
In summary of all in vitro data obtained in this work, a selective antitumor effect of NTP on murine pancreatic adenocarcinoma cells can be observed, which is expressed in reduced cell viability and proliferation as well as effective induction of apoptosis without formation of necroses. These effects are primarily mediated by reactive oxygen and nitrogen species dissolved in the medium, so that even cell-free, NTP-treated liquid achieves this effect. In addition, murine fibroblasts demonstrate significantly higher resistance to NTP treatment.
In a syngeneic mouse model of peritoneal carcinomatosis of pancreatic cancer, the antiproliferative and proapototic effects of this indirect NTP treatment have been reconstructed. The repetitive intraperitoneal administration resulted in a significant reduction of the number, size and weight of the tumors with a considerable effective penetration depth (> 200 ÎĽm) within the tumor lesions. Following therapy, no local or systemic side effects could be observed, in particular reprocessed non-malignant intraperitoneal tissues showed no macro- or microscopic visible changes and also the blood composition was unchanged compared to the control group. According to the author's knowledge, in this work the influence of indirect NTP treatment on the survival of immunocompetent, tumor-bearing mice was investigated for the first time, demonstrating a significant survival advantage (62 days vs. 52 days).
This work represents an important step in the development of new treatment options for metastatic pancreatic adenocarcinoma, as the selective efficacy of NTP in vitro could now also be replicated in vivo in a complex organism such as the immunocompetent mouse. Future work on the possibilities to regulate NTP via fluid and plasma modifications is likely to reveal the full potential of this novel therapeutic approach
Recommended from our members
A case of giant retroperitoneal lymphangioma and IgG4-positive fibrosis: Causality or coincidence?
Several chronic inflammatory diseases have been found to be a subtype of IgG4-related disease, all of which have a typical clinical and histological change, which is based in particular on an overexpression of IgG4 and subsequent fibrosis. At least a part of the retroperitoneal fibrosis, which was originally classified as idiopathic, seems to be assigned to IgG4-related disease. Lymphangiomas are benign, cystic tumors that rarely occur in adults. However, there is no firm association with IgG4-related disease described in the literature to date. This report is about a patient suffering from acute renal failure due to a giant retroperitoneal cyst. Surgical resection remains incomplete in the iliac vessel area due to severe fibrosis and histology revealed features of both lymphangioma and IgG4+ fibrosis. The case description is followed by a brief overview of IgG4-related disease and a consideration of whether lymphangiomas might be assigned to this topic
Gas Plasma-Conditioned Ringer’s Lactate Enhances the Cytotoxic Activity of Cisplatin and Gemcitabine in Pancreatic Cancer In Vitro and In Ovo
Pancreatic cancer is one of the most aggressive tumor entities. Diffuse metastatic infiltration of vessels and the peritoneum restricts curative surgery. Standard chemotherapy protocols include the cytostatic drug gemcitabine with limited efficacy at considerable toxicity. In search of a more effective and less toxic treatment modality, we tested in human pancreatic cancer cells (MiaPaca and PaTuS) a novel combination therapy consisting of cytostatic drugs (gemcitabine or cisplatin) and gas plasma-conditioned Ringer’s lactate that acts via reactive oxygen species. A decrease in metabolic activity and viability, change in morphology, and cell cycle arrest was observed in vitro. The combination treatment was found to be additively toxic. The findings were validated utilizing an in ovo tumor model of solid pancreatic tumors growing on the chorionallantois membrane of fertilized chicken eggs (TUM-CAM). The combination of the drugs (especially cisplatin) with the plasma-conditioned liquid significantly enhanced the anti-cancer effects, resulting in the induction of cell death, cell cycle arrest, and inhibition of cell growth with both of the cell lines tested. In conclusion, our novel combination approach may be a promising new avenue to increase the tolerability and efficacy of locally applied chemotherapeutic in diffuse metastatic peritoneal carcinomatosis of the pancreas. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
Recommended from our members
Physical plasma-treated saline promotes an immunogenic phenotype in CT26 colon cancer cells in vitro and in vivo
Metastatic colorectal cancer is the fourth most common cause of cancer death. Current options in palliation such as hyperthermic intraperitoneal chemotherapy (HIPEC) present severe side effects. Recent research efforts suggested the therapeutic use of oxidant-enriched liquid using cold physical plasma. To investigate a clinically accepted treatment regimen, we assessed the antitumor capacity of plasma-treated saline solution. In response to such liquid, CT26 murine colon cancer cells were readily oxidized and showed cell growth with subsequent apoptosis, cell cycle arrest, and upregulation of immunogenic cell death (ICD) markers in vitro. This was accompanied by marked morphological changes with re-arrangement of actin fibers and reduced motility. Induction of an epithelial-to-mesenchymal transition phenotype was not observed. Key results were confirmed in MC38 colon and PDA6606 pancreatic cancer cells. Compared to plasma-treated saline, hydrogen peroxide was inferiorly toxic in 3D tumor spheroids but of similar efficacy in 2D models. In vivo, plasma-treated saline decreased tumor burden in Balb/C mice. This was concomitant with elevated numbers of intratumoral macrophages and increased T cell activation following incubation with CT26 cells ex vivo. Being a potential adjuvant for HIPEC therapy, our results suggest oxidizing saline solutions to inactivate colon cancer cells while potentially stimulating antitumor immune responses
Recommended from our members
Murine Macrophages Modulate Their Inflammatory Profile in Response to Gas Plasma-Inactivated Pancreatic Cancer Cells
Macrophages and immuno-modulation play a dominant role in the pathology of pancreatic cancer. Gas plasma is a technology recently suggested to demonstrate anticancer efficacy. To this end, two murine cell lines were employed to analyze the inflammatory consequences of plasma-treated pancreatic cancer cells (PDA) on macrophages using the kINPen plasma jet. Plasma treatment decreased the metabolic activity, viability, and migratory activity in an ROS- and treatment time-dependent manner in PDA cells in vitro. These results were confirmed in pancreatic tumors grown on chicken embryos in the TUM-CAM model (in ovo). PDA cells promote tumor-supporting M2 macrophage polarization and cluster formation. Plasma treatment of PDA cells abrogated this cluster formation with a mixed M1/M2 phenotype observed in such co-cultured macrophages. Multiplex chemokine and cytokine quantification showed a marked decrease of the neutrophil chemoattractant CXCL1, IL6, and the tumor growth supporting TGFβ and VEGF in plasma-treated compared to untreated co-culture settings. At the same time, macrophage-attractant CCL4 and MCP1 release were profoundly enhanced. These cellular and secretome data suggest that the plasma-inactivated PDA6606 cells modulate the inflammatory profile of murine RAW 264.7 macrophages favorably, which may support plasma cancer therapy
Identification of Two Kinase Inhibitors with Synergistic Toxicity with Low-Dose Hydrogen Peroxide in Colorectal Cancer Cells In vitro
Colorectal carcinoma is among the most common types of cancers. With this disease, diffuse scattering in the abdominal area (peritoneal carcinosis) often occurs before diagnosis, making surgical removal of the entire malignant tissue impossible due to a large number of tumor nodules. Previous treatment options include radiation and its combination with intraperitoneal heat-induced chemotherapy (HIPEC). Both options have strong side effects and are often poor in therapeutic efficacy. Tumor cells often grow and proliferate dysregulated, with enzymes of the protein kinase family often playing a crucial role. The present study investigated whether a combination of protein kinase inhibitors and low-dose induction of oxidative stress (using hydrogen peroxide, H2O2) has an additive cytotoxic effect on murine, colorectal tumor cells (CT26). Protein kinase inhibitors from a library of 80 substances were used to investigate colorectal cancer cells for their activity, morphology, and immunogenicity (immunogenic cancer cell death, ICD) upon mono or combination. Toxic compounds identified in 2D cultures were confirmed in 3D cultures, and additive cytotoxicity was identified for the substances lavendustin A, GF109203X, and rapamycin. Toxicity was concomitant with cell cycle arrest, but except HMGB1, no increased expression of immunogenic markers was identified with the combination treatment. The results were validated for GF109203X and rapamycin but not lavendustin A in the 3D model of different colorectal (HT29, SW480) and pancreatic cancer cell lines (MiaPaca, Panc01). In conclusion, our in vitro data suggest that combining oxidative stress with chemotherapy would be conceivable to enhance antitumor efficacy in HIPEC. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
Recommended from our members
Identification of two kinase inhibitors with synergistic toxicity with low-dose hydrogen peroxide in colorectal cancer cells in vitro
Colorectal carcinoma is among the most common types of cancers. With this disease, diffuse scattering in the abdominal area (peritoneal carcinosis) often occurs before diagnosis, making surgical removal of the entire malignant tissue impossible due to a large number of tumor nodules. Previous treatment options include radiation and its combination with intraperitoneal heat-induced chemotherapy (HIPEC). Both options have strong side effects and are often poor in therapeutic efficacy. Tumor cells often grow and proliferate dysregulated, with enzymes of the protein kinase family often playing a crucial role. The present study investigated whether a combination of protein kinase inhibitors and low-dose induction of oxidative stress (using hydrogen peroxide, H2O2) has an additive cytotoxic effect on murine, colorectal tumor cells (CT26). Protein kinase inhibitors from a library of 80 substances were used to investigate colorectal cancer cells for their activity, morphology, and immunogenicity (immunogenic cancer cell death, ICD) upon mono or combination. Toxic compounds identified in 2D cultures were confirmed in 3D cultures, and additive cytotoxicity was identified for the substances lavendustin A, GF109203X, and rapamycin. Toxicity was concomitant with cell cycle arrest, but except HMGB1, no increased expression of immunogenic markers was identified with the combination treatment. The results were validated for GF109203X and rapamycin but not lavendustin A in the 3D model of different colorectal (HT29, SW480) and pancreatic cancer cell lines (MiaPaca, Panc01). In conclusion, our in vitro data suggest that combining oxidative stress with chemotherapy would be conceivable to enhance antitumor efficacy in HIPEC. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
Decontaminative Properties of Cold Atmospheric Plasma Treatment on Collagen Membranes Used for Guided Bone Regeneration
Background cold atmospheric plasma (CAP) is known to be a surface-friendly yet antimicrobial and activating process for surfaces such as titanium. The aim of the present study was to describe the decontaminating effects of CAP on contaminated collagen membranes and their influence on the properties of this biomaterial in vitro. Material and Methods: A total of n = 18 Bio-Gide® (Geistlich Biomaterials, Baden-Baden, Germany) membranes were examined. The intervention group was divided as follows: n = 6 membranes were treated for one minute, and n = 6 membranes were treated for five minutes with CAP using kINPen® MED (neoplas tools GmbH, Greifswald, Germany) with an output of 5 W, respectively. A non-CAP-treated group (n = 6) served as the control. The topographic alterations were evaluated via X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Afterward, the samples were contaminated with E. faecalis for 6 days, and colony-forming unit (CFU) counts and additional SEM analyses were performed. The CFUs increased with CAP treatment time in our analyses, but SEM showed that the surface of the membranes was essentially free from bacteria. However, the deeper layers showed remaining microbial conglomerates. Furthermore, we showed, via XPS analysis, that increasing the CAP time significantly enhances the carbon (carbonyl group) concentration, which also correlates negatively with the decontaminating effects of CAP. Conclusions: Reactive carbonyl groups offer a potential mechanism for inhibiting the growth of E. faecalis on collagen membranes after cold atmospheric plasma treatment
Recommended from our members
Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo
Pancreatic cancer is associated with a high mortality rate. In advanced stage, patients often experience peritoneal carcinomatosis. Using a syngeneic murine pancreatic cancer cell tumor model, the effect of non-thermal plasma (NTP) on peritoneal metastatic lesions was studied. NTP generates reactive species of several kinds which have been proven to be of relevance in cancer. In vitro, exposure to both plasma and plasma-treated solution significantly decreased cell viability and proliferation of 6606PDA cancer cells, whereas mouse fibroblasts were less affected. Repeated intraperitoneal treatment of NTP-conditioned medium decreased tumor growth in vivo as determined by magnetic resonance imaging, leading to reduced tumor mass and improved median survival (61 vs 52 days; p < 0.024). Tumor nodes treated by NTP-conditioned medium demonstrated large areas of apoptosis with strongly inhibited cell proliferation. Contemporaneously, no systemic effects were found. Apoptosis was neither present in the liver nor in the gut. Also, the concentration of different cytokines in splenocytes or blood plasma as well as the distribution of various hematological parameters remained unchanged following treatment with NTP-conditioned medium. These results suggest an anticancer role of NTP-treated solutions with little to no systemic side effects being present, making NTP-treated solutions a potential complementary therapeutic option for advanced tumors
A Novel Surface Modification Strategy via Photopolymerized Poly-Sulfobetaine Methacrylate Coating to Prevent Bacterial Adhesion on Titanium Surfaces
Recent investigations on the anti-adhesive properties of polysulfobetaine methacrylate (pSBMA) coatings had shown promising potential as antifouling surfaces and have given the impetus for the present paper, where a pSBMA coating is applied via photopolymerization on a macro-roughened, sandblasted, and acid-etched titanium implant surface in order to assess its antifouling properties. Current emphasis is placed on how the coating is efficient against the adhesion of Enterococcus faecalis by quantitative assessment of colony forming units and qualitative investigation of fluorescence imaging and scanning electron microscopy. pSBMA coatings via photopolymerization of titanium surfaces seems to be a promising antiadhesion strategy, which should bring substantial benefits once certain aspects such as biodegradation and osseointegration were addressed. Additionally, commercial SAL-titanium substrates may be coated with the super-hydrophilic coating, appearing resistant to physiological salt concentrations and most importantly lowering E. faecalis colonization significantly, compared to titanium substrates in the as-received state. It is very likely that pSBMA coatings may also prevent the adhesion of other germs