988 research outputs found
Classical dimer model with anisotropic interactions on the square lattice
We discuss phase transitions and the phase diagram of a classical dimer model
with anisotropic interactions defined on a square lattice. For the attractive
region, the perturbation of the orientational order parameter introduced by the
anisotropy causes the Berezinskii-Kosterlitz-Thouless transitions from a
dimer-liquid to columnar phases. According to the discussion by Nomura and
Okamoto for a quantum-spin chain system [J. Phys. A 27, 5773 (1994)], we
proffer criteria to determine transition points and also universal
level-splitting conditions. Subsequently, we perform numerical diagonalization
calculations of the nonsymmetric real transfer matrices up to linear dimension
specified by L=20 and determine the global phase diagram. For the repulsive
region, we find the boundary between the dimer-liquid and the strong repulsion
phases. Based on the dispersion relation of the one-string motion, which
exhibits a two-fold ``zero-energy flat band'' in the strong repulsion limit, we
give an intuitive account for the property of the strong repulsion phase.Comment: 11 pages, 8 figure
Nonintegrability of the two-body problem in constant curvature spaces
We consider the reduced two-body problem with the Newton and the oscillator
potentials on the sphere and the hyperbolic plane .
For both types of interaction we prove the nonexistence of an additional
meromorphic integral for the complexified dynamic systems.Comment: 20 pages, typos correcte
Probing electron-electron interaction in quantum Hall systems with scanning tunneling spectroscopy
Using low-temperature scanning tunneling spectroscopy applied to the
Cs-induced two-dimensional electron system (2DES) on p-type InSb(110), we probe
electron-electron interaction effects in the quantum Hall regime. The 2DES is
decoupled from p-doped bulk states and exhibits spreading resistance within the
insulating quantum Hall phases. In quantitative agreement with calculations we
find an exchange enhancement of the spin splitting. Moreover, we observe that
both the spatially averaged as well as the local density of states feature a
characteristic Coulomb gap at the Fermi level. These results show that
electron-electron interaction effects can be probed down to a resolution below
all relevant length scales.Comment: supplementary movie in ancillary file
Bistability and oscillatory motion of natural nano-membranes appearing within monolayer graphene on silicon dioxide
The recently found material graphene is a truly two-dimensional crystal and
exhibits, in addition, an extreme mechanical strength. This in combination with
the high electron mobility favours graphene for electromechanical
investigations down to the quantum limit. Here, we show that a monolayer of
graphene on SiO2 provides natural, ultra-small membranes of diameters down to 3
nm, which are caused by the intrinsic rippling of the material. Some of these
nano-membranes can be switched hysteretically between two vertical positions
using the electric field of the tip of a scanning tunnelling microscope (STM).
They can also be forced to oscillatory motion by a low frequency ac-field.
Using the mechanical constants determined previously, we estimate a high
resonance frequency up to 0.4 THz. This might be favorable for
quantum-electromechanics and is prospective for single atom mass spectrometers.Comment: 9 pages, 4 figure
Numerical Linked-Cluster Approach to Quantum Lattice Models
We present a novel algorithm that allows one to obtain temperature dependent
properties of quantum lattice models in the thermodynamic limit from exact
diagonalization of small clusters. Our Numerical Linked Cluster (NLC) approach
provides a systematic framework to assess finite-size effects and is valid for
any quantum lattice model. Unlike high temperature expansions (HTE), which have
a finite radius of convergence in inverse temperature, these calculations are
accurate at all temperatures provided the range of correlations is finite. We
illustrate the power of our approach studying spin models on {\it kagom\'e},
triangular, and square lattices.Comment: 4 pages, 5 figures, published versio
Recommended from our members
Seasonal cycle of precipitation variability in South America on intraseasonal timescales
The seasonal cycle of the intraseasonal (IS) variability of precipitation in South America is described through the analysis of bandpass filtered outgoing longwave radiation (OLR) anomalies. The analysis is discriminated between short (10--30 days) and long (30--90 days) intraseasonal timescales. The seasonal cycle of the 30--90-day IS variability can be well described by the activity of first leading pattern (EOF1) computed separately for the wet season (October--April) and the dry season (May--September). In agreement with previous works, the EOF1 spatial distribution during the wet season is that of a dipole with centers of actions in the South Atlantic Convergence Zone (SACZ) and southeastern South America (SESA), while during the dry season, only the last center is discernible. In both seasons, the pattern is highly influenced by the activity of the Madden--Julian Oscillation (MJO). Moreover, EOF1 is related with a tropical zonal-wavenumber-1 structure superposed with coherent wave trains extended along the South Pacific during the wet season, while during the dry season the wavenumber-1 structure is not observed. The 10--30-day IS variability of OLR in South America can be well represented by the activity of the EOF1 computed through considering all seasons together, a dipole but with the stronger center located over SESA. While the convection activity at the tropical band does not seem to influence its activity, there are evidences that the atmospheric variability at subtropical-extratropical regions might have a role. Subpolar wavetrains are observed in the Pacific throughout the year and less intense during DJF, while a path of wave energy dispersion along a subtropical wavetrain also characterizes the other seasons. Further work is needed to identify the sources of the 10--30-day-IS variability in South America
Dynamical response of the nuclear pasta in neutron star crusts
The nuclear pasta -- a novel state of matter having nucleons arranged in a
variety of complex shapes -- is expected to be found in the crust of neutron
stars and in core-collapse supernovae at subnuclear densities of about
g/cm. Due to frustration, a phenomenon that emerges from the
competition between short-range nuclear attraction and long-range Coulomb
repulsion, the nuclear pasta displays a preponderance of unique low-energy
excitations. These excitations could have a strong impact on many transport
properties, such as neutrino propagation through stellar environments. The
excitation spectrum of the nuclear pasta is computed via a molecular-dynamics
simulation involving up to 100,000 nucleons. The dynamic response of the pasta
displays a classical plasma oscillation in the 1-2 MeV region. In addition,
substantial strength is found at low energies. Yet this low-energy strength is
missing from a simple ion model containing a single-representative heavy
nucleus. The low-energy strength observed in the dynamic response of the pasta
is likely to be a density wave involving the internal degrees of freedom of the
clusters.Comment: 4 pages, 3 figures, Phys Rev C in pres
- …