725 research outputs found

    Apparent rippling with honeycomb symmetry and tunable periodicity observed by scanning tunneling microscopy on suspended graphene

    Full text link
    Suspended graphene is difficult to image by scanning probe microscopy due to the inherent van-der-Waals and dielectric forces exerted by the tip which are not counteracted by a substrate. Here, we report scanning tunneling microscopy data of suspended monolayer graphene in constant-current mode revealing a surprising honeycomb structure with amplitude of 50−-200 pm and lattice constant of 10-40 nm. The apparent lattice constant is reduced by increasing the tunneling current II, but does not depend systematically on tunneling voltage VV or scan speed vscanv_{\rm scan}. The honeycomb lattice of the rippling is aligned with the atomic structure observed on supported areas, while no atomic corrugation is found on suspended areas down to the resolution of about 3−43-4 pm. We rule out that the honeycomb structure is induced by the feedback loop using a changing vscanv_{\rm scan}, that it is a simple enlargement effect of the atomic resolution as well as models predicting frozen phonons or standing phonon waves induced by the tunneling current. Albeit we currently do not have a convincing explanation for the observed effect, we expect that our intriguing results will inspire further research related to suspended graphene.Comment: 10 pages, 7 figures, modified, more detailed discussion on errors in vdW parameter

    Nonintegrability of the two-body problem in constant curvature spaces

    Full text link
    We consider the reduced two-body problem with the Newton and the oscillator potentials on the sphere S2{\bf S}^{2} and the hyperbolic plane H2{\bf H}^{2}. For both types of interaction we prove the nonexistence of an additional meromorphic integral for the complexified dynamic systems.Comment: 20 pages, typos correcte

    Two-dimensional charge order in layered 2-1-4 perovskite oxides

    Full text link
    Monte Carlo simulations are performed on the three-dimensional (3D) Ising model with the 2-1-4 layered perovskite structure as a minimal model for checkerboard charge ordering phenomena in layered perovskite oxides. Due to the interlayer frustration, only 2D long-range order emerges with a finite correlation length along the c axis. Critical exponents of the transition change continuously as a function of the interlayer coupling constant. The interlayer long-range Coulomb interaction decays exponentially and is negligible even between the second-neighbor layers. Instead, monoclinic distortion of a tetragonal unit cell lifts the macroscopic degeneracy to induce a 3D charge ordering. The dimensionality of the charge order in La0.5_{0.5}Sr1.5_{1.5}MnO4_4 is discussed from this viewpoint.Comment: 5 pages including 6 figures, with major changes including discussion on charge ordering phenomena in layered perovskite oxide

    Dynamical response of the nuclear pasta in neutron star crusts

    Full text link
    The nuclear pasta -- a novel state of matter having nucleons arranged in a variety of complex shapes -- is expected to be found in the crust of neutron stars and in core-collapse supernovae at subnuclear densities of about 101410^{14} g/cm3^3. Due to frustration, a phenomenon that emerges from the competition between short-range nuclear attraction and long-range Coulomb repulsion, the nuclear pasta displays a preponderance of unique low-energy excitations. These excitations could have a strong impact on many transport properties, such as neutrino propagation through stellar environments. The excitation spectrum of the nuclear pasta is computed via a molecular-dynamics simulation involving up to 100,000 nucleons. The dynamic response of the pasta displays a classical plasma oscillation in the 1-2 MeV region. In addition, substantial strength is found at low energies. Yet this low-energy strength is missing from a simple ion model containing a single-representative heavy nucleus. The low-energy strength observed in the dynamic response of the pasta is likely to be a density wave involving the internal degrees of freedom of the clusters.Comment: 4 pages, 3 figures, Phys Rev C in pres

    Adrenergic/Cholinergic Immunomodulation in the Rat Model—In Vivo Veritas?

    Get PDF
    For several years, our group has been studying the in vivo role of adrenergic and cholinergic mechanisms in the immune-neuroendocrine dialogue in the rat model. The main results of these studies can be summarized as follows: (1) exogenous or endogenous catecholamines suppress PBL functions through alpha-2-receptor-mediated mechanisms, lymphocytes of the spleen are resistant to adrenergic in vivo stimulation, (2) direct or indirect cholinergic treatment leads to enhanced ex vivo functions of splenic and thymic lymphocytes leaving PBL unaffected, (3) cholinergic pathways play a critical role in the “talking back” of the immune system to the brain, (4) acetylcholine inhibits apoptosis of thymocytes possibly via direct effects on thymic epithelial cells, and may thereby influence T-cell maturation, (5) lymphocytes of the various immunological compartments were found to be equipped with the key enzymes for the synthesis of both acetylcholine and norepinephrine, and to secrete these neurotransmitters in culture supernatant

    Exfoliated hexagonal BN as gate dielectric for InSb nanowire quantum dots with improved gate hysteresis and charge noise

    Full text link
    We characterize InSb quantum dots induced by bottom finger gates within a nanowire that is grown via the vapor-liquid-solid process. The gates are separated from the nanowire by an exfoliated 35\,nm thin hexagonal BN flake. We probe the Coulomb diamonds of the gate induced quantum dot exhibiting charging energies of ∌2.5 meV\sim 2.5\,\mathrm{meV} and orbital excitation energies up to 0.3 meV0.3\,\mathrm{meV}. The gate hysteresis for sweeps covering 5 Coulomb diamonds reveals an energy hysteresis of only 60ÎŒeV60\mathrm{\mu eV} between upwards and downwards sweeps. Charge noise is studied via long-term measurements at the slope of a Coulomb peak revealing potential fluctuations of ∌1 ΌeV/Hz\sim 1\,\mu \mathrm{eV}/\mathrm{\sqrt{Hz}} at 1\,Hz. This makes h-BN the dielectric with the currently lowest gate hysteresis and lowest low-frequency potential fluctuations reported for low-gap III-V nanowires. The extracted values are similar to state-of-the art quantum dots within Si/SiGe and Si/SiO2{_2} systems

    Power-law spin correlations in pyrochlore antiferromagnets

    Full text link
    The ground state ensemble of the highly frustrated pyrochlore-lattice antiferromagnet can be mapped to a coarse-grained ``polarization'' field satisfying a zero-divergence condition From this it follows that the correlations of this field, as well as the actual spin correlations, decay with separation like a dipole-dipole interaction (1/∣R∣31/|R|^3). Furthermore, a lattice version of the derivation gives an approximate formula for spin correlations, with several features that agree well with simulations and neutron-diffraction measurements of diffuse scattering, in particular the pinch-point (pseudo-dipolar) singularities at reciprocal lattice vectors. This system is compared to others in which constraints also imply diffraction singularities, and other possible applications of the coarse-grained polarization are discussed.Comment: 13 pp, revtex, two figure

    Augmented Reality Based Surgical Navigation of Complex Pelvic Osteotomies

    Full text link
    first_page loading... settings Open AccessArticle Augmented Reality Based Surgical Navigation of Complex Pelvic Osteotomies—A Feasibility Study on Cadavers by JoĂ«lle Ackermann 1,2,† [ORCID] , Florentin Liebmann 1,2,*,† [ORCID] , Armando Hoch 3 [ORCID] , Jess G. Snedeker 2,3, Mazda Farshad 3, Stefan Rahm 3, Patrick O. Zingg 3 and Philipp FĂŒrnstahl 1 1 Research in Orthopedic Computer Science, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland 2 Laboratory for Orthopaedic Biomechanics, ETH Zurich, 8093 Zurich, Switzerland 3 Department of Orthopedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland * Author to whom correspondence should be addressed. † These authors contributed equally to this work. Academic Editor: Jiro Tanaka Appl. Sci. 2021, 11(3), 1228; https://doi.org/10.3390/app11031228 Received: 20 December 2020 / Revised: 13 January 2021 / Accepted: 25 January 2021 / Published: 29 January 2021 (This article belongs to the Special Issue Artificial Intelligence (AI) and Virtual Reality (VR) in Biomechanics) Download PDF Browse Figures Citation Export Abstract Augmented reality (AR)-based surgical navigation may offer new possibilities for safe and accurate surgical execution of complex osteotomies. In this study we investigated the feasibility of navigating the periacetabular osteotomy of Ganz (PAO), known as one of the most complex orthopedic interventions, on two cadaveric pelves under realistic operating room conditions. Preoperative planning was conducted on computed tomography (CT)-reconstructed 3D models using an in-house developed software, which allowed creating cutting plane objects for planning of the osteotomies and reorientation of the acetabular fragment. An AR application was developed comprising point-based registration, motion compensation and guidance for osteotomies as well as fragment reorientation. Navigation accuracy was evaluated on CT-reconstructed 3D models, resulting in an error of 10.8 mm for osteotomy starting points and 5.4° for osteotomy directions. The reorientation errors were 6.7°, 7.0° and 0.9° for the x-, y- and z-axis, respectively. Average postoperative error of LCE angle was 4.5°. Our study demonstrated that the AR-based execution of complex osteotomies is feasible. Fragment realignment navigation needs further improvement, although it is more accurate than the state of the art in PAO surgery

    Pyrochlore Antiferromagnet: A Three-Dimensional Quantum Spin Liquid

    Full text link
    The quantum pyrochlore antiferromagnet is studied by perturbative expansions and exact diagonalization of small clusters. We find that the ground state is a spin-liquid state: The spin-spin correlation functions decay exponentially with distance and the correlation length never exceeds the interatomic distance. The calculated magnetic neutron diffraction cross section is in very good agreement with experiments performed on Y(Sc)Mn2. The low energy excitations are singlet-singlet ones, with a finite spin gap.Comment: 4 pages, 4 figure
    • 

    corecore