4,535 research outputs found

    Review of available synchronization and time distribution techniques

    Get PDF
    The methods of synchronizing precision clocks will be reviewed placing particular attention to the simpler techniques, their accuracies, and the approximate cost of equipment. The more exotic methods of synchronization are discussed in lesser detail. The synchronization techniques that will be covered will include satellite dissemination, communication and navigation transmissions via VLF, LF, HF, UHF and microwave as well as commercial and armed forces television. Portable clock trips will also be discussed

    Electron surface layer at the interface of a plasma and a dielectric wall

    Full text link
    We study the potential and the charge distribution across the interface of a plasma and a dielectric wall. For this purpose, the charge bound to the wall is modelled as a quasi-stationary electron surface layer which satisfies Poisson's equation and minimizes the grand canonical potential of the wall-thermalized excess electrons constituting the wall charge. Based on an effective model for a graded interface taking into account the image potential and the offset of the conduction band to the potential just outside the dielectric, we specifically calculate the potential and the electron distribution for magnesium oxide, silicon dioxide and sapphire surfaces in contact with a helium discharge. Depending on the electron affinity of the surface, we find two vastly different behaviors. For negative electron affinity, electrons do not penetrate into the wall and an external surface charge is formed in the image potential, while for positive electron affinity, electrons penetrate into the wall and a space charge layer develops in the interior of the dielectric. We also investigate how the electron surface layer merges with the bulk of the dielectric.Comment: 15 pages, 9 figures, accepted versio

    Magpie: towards a semantic web browser

    Get PDF
    Web browsing involves two tasks: finding the right web page and then making sense of its content. So far, research has focused on supporting the task of finding web resources through ‘standard’ information retrieval mechanisms, or semantics-enhanced search. Much less attention has been paid to the second problem. In this paper we describe Magpie, a tool which supports the interpretation of web pages. Magpie offers complementary knowledge sources, which a reader can call upon to quickly gain access to any background knowledge relevant to a web resource. Magpie automatically associates an ontologybased semantic layer to web resources, allowing relevant services to be invoked within a standard web browser. Hence, Magpie may be seen as a step towards a semantic web browser. The functionality of Magpie is illustrated using examples of how it has been integrated with our lab’s web resources

    Speech Communication

    Get PDF
    Contains reports on seven research projects.Contract AF19(604)-2061 with Air Force Cambridge Research CenterContract N5ori-07861 with the Navy (Office of Naval Research)National Science Foundatio

    Algebraic varieties with automorphism groups of maximal rank

    Full text link
    We confirm, to some extent, the belief that a projective variety X has the largest number (relative to the dimension of X) of independent commuting automorphisms of positive entropy only when X is birational to a complex torus or a quotient of a torus. We also include an addendum to an early paper though it is not used in the present paper.Comment: Mathematische Annalen (to appear

    Interplay Between Chaotic and Regular Motion in a Time-Dependent Barred Galaxy Model

    Full text link
    We study the distinction and quantification of chaotic and regular motion in a time-dependent Hamiltonian barred galaxy model. Recently, a strong correlation was found between the strength of the bar and the presence of chaotic motion in this system, as models with relatively strong bars were shown to exhibit stronger chaotic behavior compared to those having a weaker bar component. Here, we attempt to further explore this connection by studying the interplay between chaotic and regular behavior of star orbits when the parameters of the model evolve in time. This happens for example when one introduces linear time dependence in the mass parameters of the model to mimic, in some general sense, the effect of self-consistent interactions of the actual N-body problem. We thus observe, in this simple time-dependent model also, that the increase of the bar's mass leads to an increase of the system's chaoticity. We propose a new way of using the Generalized Alignment Index (GALI) method as a reliable criterion to estimate the relative fraction of chaotic vs. regular orbits in such time-dependent potentials, which proves to be much more efficient than the computation of Lyapunov exponents. In particular, GALI is able to capture subtle changes in the nature of an orbit (or ensemble of orbits) even for relatively small time intervals, which makes it ideal for detecting dynamical transitions in time-dependent systems.Comment: 21 pages, 9 figures (minor typos fixed) to appear in J. Phys. A: Math. Theo

    Synergistic Formation of Radicals by Irradiation with Both Vacuum Ultraviolet and Atomic Hydrogen: A Real-Time In Situ Electron Spin Resonance Study

    Full text link
    We report on the surface modification of polytetrafluoroethylene (PTFE) as an example of soft- and bio-materials that occur under plasma discharge by kinetics analysis of radical formation using in situ real-time electron spin resonance (ESR) measurements. During irradiation with hydrogen plasma, simultaneous measurements of the gas-phase ESR signals of atomic hydrogen and the carbon dangling bond (C-DB) on PTFE were performed. Dynamic changes of the C-DB density were observed in real time, where the rate of density change was accelerated during initial irradiation and then became constant over time. It is noteworthy that C-DBs were formed synergistically by irradiation with both vacuum ultraviolet (VUV) and atomic hydrogen. The in situ real-time ESR technique is useful to elucidate synergistic roles during plasma surface modification.Comment: 14 pages, 4 figure

    Simulations of electromagnetic effects in high frequency capacitively coupled discharges using the Darwin approximation

    Full text link
    The Darwin approximation is investigated for its possible use in simulation of electromagnetic effects in large size, high frequency capacitively coupled discharges. The approximation is utilized within the framework of two different fluid models which are applied to typical cases showing pronounced standing wave and skin effects. With the first model it is demonstrated that Darwin approximation is valid for treatment of such effects in the range of parameters under consideration. The second approach, a reduced nonlinear Darwin approximation-based model, shows that the electromagnetic phenomena persist in a more realistic setting. The Darwin approximation offers a simple and efficient way of carrying out electromagnetic simulations as it removes the Courant condition plaguing explicit electromagnetic algorithms and can be implemented as a straightforward modification of electrostatic algorithms. The algorithm described here avoids iterative schemes needed for the divergence cleaning and represents a fast and efficient solver, which can be used in fluid and kinetic models for self-consistent description of technical plasmas exhibiting certain electromagnetic activity
    corecore