502 research outputs found

    Free Energy of a Dilute Bose Gas: Lower Bound

    Full text link
    A lower bound is derived on the free energy (per unit volume) of a homogeneous Bose gas at density ρ\rho and temperature TT. In the dilute regime, i.e., when a3ρ1a^3\rho \ll 1, where aa denotes the scattering length of the pair-interaction potential, our bound differs to leading order from the expression for non-interacting particles by the term 4πa(2ρ2[ρρc]+2)4\pi a (2\rho^2 - [\rho-\rho_c]_+^2). Here, ρc(T)\rho_c(T) denotes the critical density for Bose-Einstein condensation (for the non-interacting gas), and []+[ ]_+ denotes the positive part. Our bound is uniform in the temperature up to temperatures of the order of the critical temperature, i.e., Tρ2/3T \sim \rho^{2/3} or smaller. One of the key ingredients in the proof is the use of coherent states to extend the method introduced in [arXiv:math-ph/0601051] for estimating correlations to temperatures below the critical one.Comment: LaTeX2e, 53 page

    A Rigorous Derivation of the Gross-Pitaevskii Energy Functional for a Two-Dimensional Bose Gas

    Full text link
    We consider the ground state properties of an inhomogeneous two-dimensional Bose gas with a repulsive, short range pair interaction and an external confining potential. In the limit when the particle number NN is large but ρˉa2\bar\rho a^2 is small, where ρˉ\bar\rho is the average particle density and aa the scattering length, the ground state energy and density are rigorously shown to be given to leading order by a Gross-Pitaevskii (GP) energy functional with a coupling constant g1/ln(ρˉa2)g\sim 1/|\ln(\bar\rho a^2)|. In contrast to the 3D case the coupling constant depends on NN through the mean density. The GP energy per particle depends only on NgNg. In 2D this parameter is typically so large that the gradient term in the GP energy functional is negligible and the simpler description by a Thomas-Fermi type functional is adequate.Comment: 14 pages, no figures, latex 2e. References, some clarifications and an appendix added. To appear in Commun. Math. Phy

    The Ground State Energy of Dilute Bose Gas in Potentials with Positive Scattering Length

    Full text link
    The leading term of the ground state energy/particle of a dilute gas of bosons with mass mm in the thermodynamic limit is 2π2aρ/m2\pi \hbar^2 a \rho/m when the density of the gas is ρ\rho, the interaction potential is non-negative and the scattering length aa is positive. In this paper, we generalize the upper bound part of this result to any interaction potential with positive scattering length, i.e, a>0a>0 and the lower bound part to some interaction potentials with shallow and/or narrow negative parts.Comment: Latex 28 page

    The TF Limit for Rapidly Rotating Bose Gases in Anharmonic Traps

    Full text link
    Starting from the full many body Hamiltonian we derive the leading order energy and density asymptotics for the ground state of a dilute, rotating Bose gas in an anharmonic trap in the ` Thomas Fermi' (TF) limit when the Gross-Pitaevskii coupling parameter and/or the rotation velocity tend to infinity. Although the many-body wave function is expected to have a complicated phase, the leading order contribution to the energy can be computed by minimizing a simple functional of the density alone

    Gradient corrections for semiclassical theories of atoms in strong magnetic fields

    Full text link
    This paper is divided into two parts. In the first one the von Weizs\"acker term is introduced to the Magnetic TF theory and the resulting MTFW functional is mathematically analyzed. In particular, it is shown that the von Weizs\"acker term produces the Scott correction up to magnetic fields of order BZ2B \ll Z^2, in accordance with a result of V. Ivrii on the quantum mechanical ground state energy. The second part is dedicated to gradient corrections for semiclassical theories of atoms restricted to electrons in the lowest Landau band. We consider modifications of the Thomas-Fermi theory for strong magnetic fields (STF), i.e. for BZ3B \ll Z^3. The main modification consists in replacing the integration over the variables perpendicular to the field by an expansion in angular momentum eigenfunctions in the lowest Landau band. This leads to a functional (DSTF) depending on a sequence of one-dimensional densities. For a one-dimensional Fermi gas the analogue of a Weizs\"acker correction has a negative sign and we discuss the corresponding modification of the DSTF functional.Comment: Latex2e, 36 page

    The Flux-Phase of the Half-Filled Band

    Full text link
    The conjecture is verified that the optimum, energy minimizing magnetic flux for a half-filled band of electrons hopping on a planar, bipartite graph is π\pi per square plaquette. We require {\it only} that the graph has periodicity in one direction and the result includes the hexagonal lattice (with flux 0 per hexagon) as a special case. The theorem goes beyond previous conjectures in several ways: (1) It does not assume, a-priori, that all plaquettes have the same flux (as in Hofstadter's model); (2) A Hubbard type on-site interaction of any sign, as well as certain longer range interactions, can be included; (3) The conclusion holds for positive temperature as well as the ground state; (4) The results hold in D2D \geq 2 dimensions if there is periodicity in D1D-1 directions (e.g., the cubic lattice has the lowest energy if there is flux π\pi in each square face).Comment: 9 pages, EHL14/Aug/9

    Ground state energy of the low density Hubbard model

    Full text link
    We derive a lower bound on the ground state energy of the Hubbard model for given value of the total spin. In combination with the upper bound derived previously by Giuliani, our result proves that in the low density limit, the leading order correction compared to the ground state energy of a non-interacting lattice Fermi gas is given by 8πaρuρd8\pi a \rho_u \rho_d, where ρu(d)\rho_{u(d)} denotes the density of the spin-up (down) particles, and aa is the scattering length of the contact interaction potential. This result extends previous work on the corresponding continuum model to the lattice case.Comment: LaTeX2e, 18 page

    Proof of an entropy conjecture for Bloch coherent spin states and its generalizations

    Full text link
    Wehrl used Glauber coherent states to define a map from quantum density matrices to classical phase space densities and conjectured that for Glauber coherent states the mininimum classical entropy would occur for density matrices equal to projectors onto coherent states. This was proved by Lieb in 1978 who also extended the conjecture to Bloch SU(2) spin-coherent states for every angular momentum JJ. This conjecture is proved here. We also recall our 1991 extension of the Wehrl map to a quantum channel from JJ to K=J+1/2,J+1,...K=J+1/2, J+1, ..., with K=K=\infty corresponding to the Wehrl map to classical densities. For each JJ and J<KJ<K\leq \infty we show that the minimal output entropy for these channels occurs for a JJ coherent state. We also show that coherent states both Glauber and Bloch minimize any concave functional, not just entropy.Comment: Version 2 only minor change

    The Lieb-Liniger Model as a Limit of Dilute Bosons in Three Dimensions

    Full text link
    We show that the Lieb-Liniger model for one-dimensional bosons with repulsive δ\delta-function interaction can be rigorously derived via a scaling limit from a dilute three-dimensional Bose gas with arbitrary repulsive interaction potential of finite scattering length. For this purpose, we prove bounds on both the eigenvalues and corresponding eigenfunctions of three-dimensional bosons in strongly elongated traps and relate them to the corresponding quantities in the Lieb-Liniger model. In particular, if both the scattering length aa and the radius rr of the cylindrical trap go to zero, the Lieb-Liniger model with coupling constant ga/r2g \sim a/r^2 is derived. Our bounds are uniform in gg in the whole parameter range 0g0\leq g\leq \infty, and apply to the Hamiltonian for three-dimensional bosons in a spectral window of size r2\sim r^{-2} above the ground state energy.Comment: LaTeX2e, 19 page

    Derivation of the Gross-Pitaevskii Hierarchy

    Full text link
    We report on some recent results regarding the dynamical behavior of a trapped Bose-Einstein condensate, in the limit of a large number of particles. These results were obtained in \cite{ESY}, a joint work with L. Erd\H os and H.-T. Yau.Comment: 15 pages; for the proceedings of the QMath9 International Conference, Giens, France, Sept. 200
    corecore