502 research outputs found
Free Energy of a Dilute Bose Gas: Lower Bound
A lower bound is derived on the free energy (per unit volume) of a
homogeneous Bose gas at density and temperature . In the dilute
regime, i.e., when , where denotes the scattering length of
the pair-interaction potential, our bound differs to leading order from the
expression for non-interacting particles by the term . Here, denotes the critical density for
Bose-Einstein condensation (for the non-interacting gas), and denotes
the positive part. Our bound is uniform in the temperature up to temperatures
of the order of the critical temperature, i.e., or smaller.
One of the key ingredients in the proof is the use of coherent states to extend
the method introduced in [arXiv:math-ph/0601051] for estimating correlations to
temperatures below the critical one.Comment: LaTeX2e, 53 page
A Rigorous Derivation of the Gross-Pitaevskii Energy Functional for a Two-Dimensional Bose Gas
We consider the ground state properties of an inhomogeneous two-dimensional
Bose gas with a repulsive, short range pair interaction and an external
confining potential. In the limit when the particle number is large but
is small, where is the average particle density and
the scattering length, the ground state energy and density are rigorously
shown to be given to leading order by a Gross-Pitaevskii (GP) energy functional
with a coupling constant . In contrast to the 3D
case the coupling constant depends on through the mean density. The GP
energy per particle depends only on . In 2D this parameter is typically so
large that the gradient term in the GP energy functional is negligible and the
simpler description by a Thomas-Fermi type functional is adequate.Comment: 14 pages, no figures, latex 2e. References, some clarifications and
an appendix added. To appear in Commun. Math. Phy
The Ground State Energy of Dilute Bose Gas in Potentials with Positive Scattering Length
The leading term of the ground state energy/particle of a dilute gas of
bosons with mass in the thermodynamic limit is when
the density of the gas is , the interaction potential is non-negative and
the scattering length is positive. In this paper, we generalize the upper
bound part of this result to any interaction potential with positive scattering
length, i.e, and the lower bound part to some interaction potentials with
shallow and/or narrow negative parts.Comment: Latex 28 page
The TF Limit for Rapidly Rotating Bose Gases in Anharmonic Traps
Starting from the full many body Hamiltonian we derive the leading order
energy and density asymptotics for the ground state of a dilute, rotating Bose
gas in an anharmonic trap in the ` Thomas Fermi' (TF) limit when the
Gross-Pitaevskii coupling parameter and/or the rotation velocity tend to
infinity. Although the many-body wave function is expected to have a
complicated phase, the leading order contribution to the energy can be computed
by minimizing a simple functional of the density alone
Gradient corrections for semiclassical theories of atoms in strong magnetic fields
This paper is divided into two parts. In the first one the von Weizs\"acker
term is introduced to the Magnetic TF theory and the resulting MTFW functional
is mathematically analyzed. In particular, it is shown that the von
Weizs\"acker term produces the Scott correction up to magnetic fields of order
, in accordance with a result of V. Ivrii on the quantum mechanical
ground state energy. The second part is dedicated to gradient corrections for
semiclassical theories of atoms restricted to electrons in the lowest Landau
band. We consider modifications of the Thomas-Fermi theory for strong magnetic
fields (STF), i.e. for . The main modification consists in replacing
the integration over the variables perpendicular to the field by an expansion
in angular momentum eigenfunctions in the lowest Landau band. This leads to a
functional (DSTF) depending on a sequence of one-dimensional densities. For a
one-dimensional Fermi gas the analogue of a Weizs\"acker correction has a
negative sign and we discuss the corresponding modification of the DSTF
functional.Comment: Latex2e, 36 page
The Flux-Phase of the Half-Filled Band
The conjecture is verified that the optimum, energy minimizing magnetic flux
for a half-filled band of electrons hopping on a planar, bipartite graph is
per square plaquette. We require {\it only} that the graph has
periodicity in one direction and the result includes the hexagonal lattice
(with flux 0 per hexagon) as a special case. The theorem goes beyond previous
conjectures in several ways: (1) It does not assume, a-priori, that all
plaquettes have the same flux (as in Hofstadter's model); (2) A Hubbard type
on-site interaction of any sign, as well as certain longer range interactions,
can be included; (3) The conclusion holds for positive temperature as well as
the ground state; (4) The results hold in dimensions if there is
periodicity in directions (e.g., the cubic lattice has the lowest energy
if there is flux in each square face).Comment: 9 pages, EHL14/Aug/9
Ground state energy of the low density Hubbard model
We derive a lower bound on the ground state energy of the Hubbard model for
given value of the total spin. In combination with the upper bound derived
previously by Giuliani, our result proves that in the low density limit, the
leading order correction compared to the ground state energy of a
non-interacting lattice Fermi gas is given by , where
denotes the density of the spin-up (down) particles, and is
the scattering length of the contact interaction potential. This result extends
previous work on the corresponding continuum model to the lattice case.Comment: LaTeX2e, 18 page
Proof of an entropy conjecture for Bloch coherent spin states and its generalizations
Wehrl used Glauber coherent states to define a map from quantum density
matrices to classical phase space densities and conjectured that for Glauber
coherent states the mininimum classical entropy would occur for density
matrices equal to projectors onto coherent states. This was proved by Lieb in
1978 who also extended the conjecture to Bloch SU(2) spin-coherent states for
every angular momentum . This conjecture is proved here. We also recall our
1991 extension of the Wehrl map to a quantum channel from to , with corresponding to the Wehrl map to classical densities.
For each and we show that the minimal output entropy for
these channels occurs for a coherent state. We also show that coherent
states both Glauber and Bloch minimize any concave functional, not just
entropy.Comment: Version 2 only minor change
The Lieb-Liniger Model as a Limit of Dilute Bosons in Three Dimensions
We show that the Lieb-Liniger model for one-dimensional bosons with repulsive
-function interaction can be rigorously derived via a scaling limit
from a dilute three-dimensional Bose gas with arbitrary repulsive interaction
potential of finite scattering length. For this purpose, we prove bounds on
both the eigenvalues and corresponding eigenfunctions of three-dimensional
bosons in strongly elongated traps and relate them to the corresponding
quantities in the Lieb-Liniger model. In particular, if both the scattering
length and the radius of the cylindrical trap go to zero, the
Lieb-Liniger model with coupling constant is derived. Our bounds
are uniform in in the whole parameter range , and apply
to the Hamiltonian for three-dimensional bosons in a spectral window of size
above the ground state energy.Comment: LaTeX2e, 19 page
Derivation of the Gross-Pitaevskii Hierarchy
We report on some recent results regarding the dynamical behavior of a
trapped Bose-Einstein condensate, in the limit of a large number of particles.
These results were obtained in \cite{ESY}, a joint work with L. Erd\H os and
H.-T. Yau.Comment: 15 pages; for the proceedings of the QMath9 International Conference,
Giens, France, Sept. 200
- …