53 research outputs found

    Herb-Drug Pharmacokinetic Interaction of a Traditional Chinese Medicine Jia-Wei-Xiao-Yao-San with 5-Fluorouracil in the Blood and Brain of Rat Using Microdialysis

    Get PDF
    According to a survey from the National Health Insurance Research Database (NHIRD), Jia-Wei-Xiao-Yao-San (JWXYS) is the most popular Chinese medicine for cancer patients in Taiwan. 5-Fluorouracil (5-FU) is a general anticancer drug for the chemotherapy. To investigate the herb-drug interaction of JWXYS on pharmacokinetics of 5-FU, a microdialysis technique coupled with a high-performance liquid chromatography system was used to monitor 5-FU in rat blood and brain. Rats were divided into four parallel groups, one of which was treated with 5-FU (100 mg/kg, i.v.) alone and the remaining three groups were pretreated with a different dose of JWXYS (600, 1200, or 2400 mg/kg/day for 5 consecutive days) followed by a combination with 5-FU. This study demonstrates that 5-FU with JWXYS (600 mg/kg/day or 1200 mg/kg/day) has no significant effect on the pharmacokinetics of 5-FU in the blood and brain. However, JWXYS (2400 mg/kg/day) coadministered with 5-FU extends the elimination half-life and increases the volume of distribution of 5-FU in the blood. The elimination half-life of 5-FU in the brain for the pretreatment group with 2400 mg/kg/day of JWXYS is significantly longer than that for the group treated with 5-FU alone and also reduces the clearance. This study provides practical dosage information for clinical practice and proves the safety of 5-FU coadministered with JWXYS

    Effects of polymer molecular weight on relative oral bioavailability of curcumin

    Get PDF
    Yin-Meng Tsai,1 Wan-Ling Chang-Liao,1 Chao-Feng Chien,1 Lie-Chwen Lin,1,2 Tung-Hu Tsai,1,31Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, 2National Research Institute of Chinese Medicine, 3Department of Education and Research, Taipei City Hospital, Taipei, TaiwanBackground: Polylactic-co-glycolic acid (PLGA) nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome.Methods: Curcumin encapsulated in low (5000–15,000) and high (40,000–75,000) molecular weight PLGA (LMw-NPC and HMw-NPC, respectively) were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples.Results: There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (Cmax) of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 µg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability compared with conventional curcumin and LMw-NPC.Conclusion: Our findings demonstrate that different molecular weights of PLGA have varying bioavailability, contributing to changes in the absorption rate at the duodenum. The results of this study provide the rationale for design of a nanomedicine delivery system to enhance the bioavailability of water-insoluble pharmaceutical compounds and functional foods.Keywords: absorption, duodenum, molecular weight, poly(lactic-co-glycolic acid), PLGA, relative oral bioavailabilit

    Determination and Pharmacokinetic Study of Gentiopicroside, Geniposide, Baicalin, and Swertiamarin in Chinese Herbal Formulae after Oral Administration in Rats by LC-MS/MS

    No full text
    A sensitive and efficient liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of gentiopicroside, geniposide, baicalin, and swertiamarin in rat plasma. To avoid the stress caused by restraint or anesthesia, a freely moving rat model was used to investigate the pharmacokinetics of herbal medicine after the administration of a traditional Chinese herbal prescription of Long-Dan-Xie-Gan-Tang (10 g/kg, p.o.). Analytes were separated by a C18 column with a gradient system of methanol–water containing 1 mM ammonium acetate with 0.1% formic acid. The linear ranges were 10–500 ng/mL for gentiopicroside, geniposide, and baicalin, and 5–250 ng/mL for swertiamarin in biological samples. The intra- and inter-day precision (relative standard deviation) ranged from 0.9% to 11.4% and 0.3% to 14.4%, respectively. The accuracy (relative error) was from −6.3% to 10.1% at all quality control levels. The analytical system provided adequate matrix effect and recovery with good precision and accuracy. The pharmacokinetic data demonstrated that the area under concentration-time curve (AUC) values of gentiopicroside, geniposide, baicalin, and swertiamarin were 1417 ± 83.8, 302 ± 25.8, 753 ± 86.2, and 2.5 ± 0.1 min µg/mL. The pharmacokinetic profiles provide constructive information for the dosage regimen of herbal medicine and also contribute to elucidate the absorption mechanism in herbal applications and pharmacological experiments

    HPLC-MS/MS analysis of a traditional Chinese medical formulation of Bu-Yang-Huan-Wu-Tang and its pharmacokinetics after oral administration to rats.

    Get PDF
    Bu-yang-huan-wu-tang (BYHWT) is one of the most popular formulated traditional Chinese medicine prescriptions, and is widely for prevention of ischemic cardio-cerebral vascular diseases and stroke-induced disability. A specific high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has been developed and validated for simultaneous quantification of the nine main bioactive components, i.e., astragaloside I, astragaloside II, astragaloside IV, formononetin, ononin, calycosin, calycosin-7-O-β-d-glucoside, ligustilide and paeoniflorin in rat plasma after oral administration of BYHWT extract. This method was applied to investigate the pharmacokinetics in conscious and freely moving rats. No significant matrix effects were observed. The overall analytical procedure was rapid and reproducible, which makes it suitable for quantitative analysis of a large number of samples. Among them, three astragalosides and four isoflavones in A. membranaceus, ligustilide in Radix Angelicae Sinensis and Rhizoma Ligustici Chuanxiong and paeoniflorin in Radix Paeoniae Rubra were identified. This developed method was then successfully applied to pharmacokinetic studies of the nine bioactive constituents after oral administration of BYHWT extracts in rats. The pharmacokinetic data demonstrated that astragaloside I, astragaloside II, astragaloside IV and ligustilide presented the phenomenon of double peaks. The other herbal ingredients of formononetin, ononin, calycosin, calycosin-7-O-β-d-glucoside and paeoniflorin appeared together in a single and plateau absorption phase. These phenomenona suggest that these components may have multiple absorption sites, regulation of enterohepatic circulation or the gastric emptying rate, or there is ingredient-ingredient interaction. These pharmacokinetic results provide a constructive contribution to better understand the absorption mechanism of BYHWT and to support additional clinical evaluation

    Cytotoxic Principles from Ventilago

    No full text

    Immunomodulatory Principles of Dichrocephala bicolor

    No full text

    Immunomodulatory Proanthocyanidins from Ecdysanthera

    No full text

    Pharmacokinetics of Maleic Acid as a Food Adulterant Determined by Microdialysis in Rat Blood and Kidney Cortex

    No full text
    Maleic acid has been shown to be used as a food adulterant in the production of modified starch by the Taiwan Food and Drug Administration. Due to the potential toxicity of maleic acid to the kidneys, this study aimed to develop an analytical method to investigate the pharmacokinetics of maleic acid in rat blood and kidney cortex. Multiple microdialysis probes were simultaneously inserted into the jugular vein and the kidney cortex for sampling after maleic acid administration (10 or 30 mg/kg, i.v., respectively). The pharmacokinetic results demonstrated that maleic acid produced a linear pharmacokinetic phenomenon within the doses of 10 and 30 mg/kg. The area under concentration versus time curve (AUC) of the maleic acid in kidney cortex was 5-fold higher than that in the blood after maleic acid administration (10 and 30 mg/kg, i.v., respectively), indicating that greater accumulation of maleic acid occurred in the rat kidney

    Isolation of Luteolin and Luteolin-7‑<i>O</i>‑glucoside from Dendranthema morifolium Ramat Tzvel and Their Pharmacokinetics in Rats

    No full text
    Luteolin and luteolin-7-<i>O</i>-glucoside were isolated from the ethanolic extract of Dendranthema morifolium Ramat Tzvel. The structures of these analytes were identified by nuclear magnetic resonance (<sup>1</sup>H and <sup>13</sup>C NMR) and mass spectrometry. Ethanolic and water extracts contained luteolin-7-<i>O</i>-glucoside at 4.19 and 6.56%, respectively. However, the level of luteolin was only 0.19% in the ethanolic extract, and luteolin was not detected in the water extract. To examine the pharmacokinetics and bioavailability of luteolin and luteolin-7-<i>O</i>-glucoside in rats, parallel studies of luteolin (10 mg/kg, iv; and 100 mg/kg, po) and luteolin-7-<i>O</i>-glucoside (10 mg/kg, iv; and 1 g/kg, po) were conducted. The analytes were detected by high-performance liquid chromatography coupled with a photodiode array detector. A phenyl-hexyl (150 × 4.6 mm iv; 5.0 μm) column was used to separate the analytes from the biological samples. The pharmacokinetic data demonstrate that the areas under the concentration curves (AUCs) of luteolin were 261 ± 33 and 611 ± 89 (min μg/mL) after luteolin administration (10 mg/kg, iv; and 100 mg/kg, po, respectively). The oral bioavailability of luteolin was 26 ± 6%. The AUCs of luteolin-7-<i>O</i>-glucoside were 229 ± 15 and 2109 ± 350 (min μg/mL) after administration of luteolin-7-<i>O</i>-glucoside (10 mg/kg, iv; and 1 g/kg, po, respectively). The oral bioavailability of luteolin-7-<i>O</i>-glucoside was approximately 10 ± 2%. In the group that received luteolin-7-<i>O</i>-glucoside orally, a biotransformed luteolin product was detected, but this product was not detected in the group that received luteolin-7-<i>O</i>-glucoside intravenously. The biotransformation ratio of luteolin to luteolin-7-<i>O</i>-glucoside (the AUC ratio of metabolite/parent compound) was approximately 48.78 ± 0.12%. These results demonstrate that luteolin-7-<i>O</i>-glucoside is primarily hydrolyzed to luteolin in the gastrointestinal tract and then absorbed into the systemic circulation
    • …
    corecore