4 research outputs found
High penetrance of acute intermittent porphyria in a Spanish founder mutation population and CYP2D6 genotype as a susceptibility factor
Abstract Background Acute intermittent porphyria (AIP) is a low-penetrant genetic metabolic disease caused by a deficiency of hydroxymethylbilane synthase (HMBS) in the haem biosynthesis. Manifest AIP (MAIP) is considered when carriers develop typical acute neurovisceral attacks with elevation of porphyrin precursors, while the absence of attacks is referred to as latent AIP (LAIP). Attacks are often triggered by drugs, endocrine factors, fasting or stress. Although AIP penetrance is traditionally considered to be around 10–20%, it has been estimated to be below 1% in general population studies and a higher figure has been found in specific AIP populations. Genetic susceptibility factors underlying penetrance are still unknown. Drug-metabolizing cytochrome P450 enzymes (CYP) are polymorphic haem-dependent proteins which play a role in haem demand, so they might modulate the occurrence of AIP attacks. Our aim was to determine the prevalence and penetrance of AIP in our population and analyse the main hepatic CYP genes to assess their association with acute attacks. For this, CYP2C9*2, *3; CYP2C19*2; CYP2D6*4, *5; CYP3A4*1B and CYP3A5*3 defective alleles were genotyped in fifty AIP carriers from the Region of Murcia, a Spanish population with a high frequency of the HMBS founder mutation c.669_698del30. Results AIP penetrance was 52%, and prevalence was estimated as 17.7 cases/million inhabitants. The frequency of defective CYP2D6 alleles was 3.5 times higher in LAIP than in MAIP. MAIP was less frequent among CYP2D6*4 and *5 carriers (p < 0.05). The urine porphobilinogen (PBG)-to-creatinine ratio was lower in these individuals, although it was associated with a lower prevalence of attacks (p < 0.05) rather than with the CYP2D6 genotype. Conclusions AIP prevalence in our region is almost 3 times higher than that estimated for the rest of Spain. The penetrance was high, and similar to other founder mutation AIP populations. This is very relevant for genetic counselling and effective health care. CYP2D6*4 and *5 alleles may be protective factors for acute attacks, and CYP2D6 may constitute a penetrance-modifying gene. Further studies are needed to confirm these findings, which would allow a further progress in clinical risk profile assessment based on the CYP genotype, leading to predictive personalized medicine for each AIP carrier in the future
<i>PRPH2</i>-Related Retinal Dystrophies: Mutational Spectrum in 103 Families from a Spanish Cohort
PRPH2, one of the most frequently inherited retinal dystrophy (IRD)-causing genes, implies a high phenotypic variability. This study aims to analyze the PRPH2 mutational spectrum in one of the largest cohorts worldwide, and to describe novel pathogenic variants and genotype–phenotype correlations. A study of 220 patients from 103 families recruited from a database of 5000 families. A molecular diagnosis was performed using classical molecular approaches and next-generation sequencing. Common haplotypes were ascertained by analyzing single-nucleotide polymorphisms. We identified 56 variants, including 11 novel variants. Most of them were missense variants (64%) and were located in the D2-loop protein domain (77%). The most frequently occurring variants were p.Gly167Ser, p.Gly208Asp and p.Pro221_Cys222del. Haplotype analysis revealed a shared region in families carrying p.Leu41Pro or p.Pro221_Cys222del. Patients with retinitis pigmentosa presented an earlier disease onset. We describe the largest cohort of IRD families associated with PRPH2 from a single center. Most variants were located in the D2-loop domain, highlighting its importance in interacting with other proteins. Our work suggests a likely founder effect for the variants p.Leu41Pro and p.Pro221_Cys222del in our Spanish cohort. Phenotypes with a primary rod alteration presented more severe affectation. Finally, the high phenotypic variability in PRPH2 hinders the possibility of drawing genotype–phenotype correlations