15 research outputs found

    Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase

    Get PDF
    Successful bacterial circular chromosome segregation requires that any dimeric chromosomes, which arise by crossing over during homologous recombination, are converted to monomers. Resolution of dimers to monomers requires the action of the XerCD site-specific recombinase at dif in the chromosome replication terminus region. This reaction requires the DNA translocase, FtsK(C), which activates dimer resolution by catalysing an ATP hydrolysis-dependent switch in the catalytic state of the nucleoprotein recombination complex. We show that a 62-amino-acid fragment of FtsK(C) interacts directly with the XerD C-terminus in order to stimulate the cleavage by XerD of BSN, a dif-DNA suicide substrate containing a nick in the ā€˜bottomā€™ strand. The resulting recombinaseā€“DNA covalent complex can undergo strand exchange with intact duplex dif in the absence of ATP. FtsK(C)-mediated stimulation of BSN cleavage by XerD requires synaptic complex formation. Mutational impairment of the XerDā€“FtsK(C) interaction leads to reduction in the in vitro stimulation of BSN cleavage by XerD and a concomitant deficiency in the resolution of chromosomal dimers at dif in vivo, although other XerD functions are not affected

    KOPS-guided DNA translocation by FtsK safeguards Escherichia coli chromosome segregation

    Get PDF
    The septum-located DNA translocase, FtsK, acts to co-ordinate the late steps of Escherichia coli chromosome segregation with cell division. The FtsK Ī³ regulatory subdomain interacts with 8 bp KOPS DNA sequences, which are oriented from the replication origin to the terminus region (ter) in each arm of the chromosome. This interaction directs FtsK translocation towards ter where the final chromosome unlinking by decatenation and chromosome dimer resolution occurs. Chromosome dimer resolution requires FtsK translocation along DNA and its interaction with the XerCD recombinase bound to the recombination site, dif, located within ter. The frequency of chromosome dimer formation is āˆ¼15% per generation in wild-type cells. Here we characterize FtsK alleles that no longer recognize KOPS, yet are proficient for translocation and chromosome dimer resolution. Non-directed FtsK translocation leads to a small reduction in fitness in otherwise normal cell populations, as a consequence of āˆ¼70% of chromosome dimers being resolved to monomers. More serious consequences arise when chromosome dimer formation is increased, or their resolution efficiency is impaired because of defects in chromosome organization and processing. For example, when Creā€“loxP recombination replaces XerCDā€“dif recombination in dimer resolution, when functional MukBEF is absent, or when replication terminates away from ter

    Competitive binding of MatP and topoisomerase IV to the MukB hinge domain.

    Get PDF
    Structural Maintenance of Chromosomes (SMC) complexes have ubiquitous roles in compacting DNA linearly, thereby promoting chromosome organization-segregation. Interaction between the Escherichia coli SMC complex, MukBEF, and matS-bound MatP in the chromosome replication termination region, ter, results in depletion of MukBEF from ter, a process essential for efficient daughter chromosome individualization and for preferential association of MukBEF with the replication origin region. Chromosome-associated MukBEF complexes also interact with topoisomerase IV (ParC2E2), so that their chromosome distribution mirrors that of MukBEF. We demonstrate that MatP and ParC have an overlapping binding interface on the MukB hinge, leading to their mutually exclusive binding, which occurs with the same dimer to dimer stoichiometry. Furthermore, we show that matS DNA competes with the MukB hinge for MatP binding. Cells expressing MukBEF complexes that are mutated at the ParC/MatP binding interface are impaired in ParC binding and have a mild defect in MukBEF function. These data highlight competitive binding as a means of globally regulating MukBEF-topoisomerase IV activity in space and time

    Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12

    No full text
    The stable inheritance of ColE1-related plasmids and the normal partition of the E. coli chromosome require the function of the Xer site-specific recombination system. We show that in addition to the XerC recombinase, whose function has already been implicated in this system, a second chromosomally encoded recombinase, XerD, is required. The XerC and XerD proteins show 37% identity and bind to separate halves of the recombination site. Both proteins act catalytically in the recombination reaction. Recombination site asymmetry and the requirement of two recombinases ensure that only correctly aligned sites are recombined. We predict that normal partition of most circular chromosomes requires the participation of site-specific recombination to convert any multimers (arising by homologous recombination) to monomers

    Site-specific recombination and circular chromosome segregation

    No full text
    The Xer site-specific recombination system functions in Escherichia coli to ensure that circular plasmids and chromosomes are in the monomeric state prior to segregation at cell division. Two recombinases, XerC and XerD, bind cooperatively to a recombination site present in the E. coli chromosome and to sites present in natural multicopy plasmids. In addition, recombination at the natural plasmid site cer, present in ColE1, requires the function of two additional accessory proteins, ArgR and PepA. These accessory proteins, along with accessory DNA sequences present in the recombination sites of plasmids are used to ensure that recombination is exclusively intramolecular, converting circular multimers to monomers. Wild-type and mutant recombination proteins have been used to analyse the formation of recombinational synapses and the catalysis of strand exchange in vitro. These experiments demonstrate how the same two recombination proteins can act with different outcomes, depending on the organization of DNA sites at which they act. Moreover, insight into the separate roles of the two recombinases is emerging
    corecore