23 research outputs found

    Screening and Identification of Trichoderma Strains Isolated from Natural Habitats with Potential to Cellulose and Xylan Degrading Enzymes Production

    Get PDF
    A total of 123 Trichoderma strains were isolated from different habitats and tested for their ability to degrade cellulose and xylan by simple plate screening method. Among strains, more than 34 and 45% respectively, exhibited higher cellulolytic and xylanolytic activity, compared to the reference strain T. reesei QM 9414. For strains efficiently degrading cellulose, a highest enzyme activity was confirmed using filter paper test, and it resulted in a range from 1.01 to 7.15 FPU/ml. Based on morphological and molecular analysis, the isolates were identified as Trichoderma. The most frequently identified strains belonged to Trichoderma harzianum species. Among all strains, the most effective in degradation of cellulose and xylose was T. harzianum and T. virens, especially those isolated from forest wood, forest soil or garden and mushroom compost. The results of this work confirmed that numerous strains from the Trichoderma species have high cellulose and xylan degradation potential and could be useful for lignocellulose biomass conversion e.g. for biofuel production

    Effect of photoperiod modulation in American mink males on their testosterone concentrations and mating performance

    Get PDF
    The aim of the study was observation of the effect of light modulation on blood testosterone levels and libido in male American mink. The study was performed on 64 Black Velvet male mink on a farm located in the north-west of Poland. Day length was modified using artificial lighting placed above mink cages. Two variants of lighting programs were applied to males: (I) from 8 of February and (II) from 12 of February. In order to measure blood testosterone concentration samples were collected from males of the experimental groups and the control groups (animals kept under natural light conditions). As a result of the experiment, the males subjected to extended lighting were found to have had slightly higher libido than those outside the treatment, although no strong or clear effect of lighting on the pattern of testosterone levels in male mink has been found. It remains unexplained whether slightly, non-significantly higher libido of the experimental males is related to the applied modulation of photoperiod. In order to unambiguously clarify the effect of day light modulation on the results of males sexual activity, further studies should be performed on a larger population and possibly using modified extended lighting programs

    Fungi Inhabiting the Wheat Endosphere

    No full text
    Wheat production is influenced by changing environmental conditions, including climatic conditions, which results in the changing composition of microorganisms interacting with this cereal. The group of these microorganisms includes not only endophytic fungi associated with the wheat endosphere, both pathogenic and symbiotic, but also those with yet unrecognized functions and consequences for wheat. This paper reviews the literature in the context of the general characteristics of endophytic fungi inhabiting the internal tissues of wheat. In addition, the importance of epigenetic regulation in wheat–fungus interactions is recognized and the current state of knowledge is demonstrated. The possibilities of using symbiotic endophytic fungi in modern agronomy and wheat cultivation are also proposed. The fact that the current understanding of fungal endophytes in wheat is based on a rather small set of experimental conditions, including wheat genotypes, plant organs, plant tissues, plant development stage, or environmental conditions, is recognized. In addition, most of the research to date has been based on culture-dependent methods that exclude biotrophic and slow-growing species and favor the detection of fast-growing fungi. Additionally, only a few reports of studies on the entire wheat microbiome using high-throughput sequencing techniques exist. Conducting comprehensive research on the mycobiome of the endosphere of wheat, mainly in the context of the possibility of using this knowledge to improve the methods of wheat management, mainly the productivity and health of this cereal, is needed

    Constellation of the endophytic mycobiome in spring and winter wheat cultivars grown under various conditions

    No full text
    Abstract The mycobiome is an integral component of every living organism. Among other fungi associated with plants, endophytes are an interesting and favorable group of microorganisms, but information regarding them is still largely unknown. Wheat is the most economically significant and essential crop for global food security, which is exposed to a range of abiotic and biotic stresses. Profiling plants’ mycobiomes can help in sustainable, chemical-reducing wheat production. The main objective of this work is to understand the structure of endogenous fungal communities in winter and spring wheat cultivars growing under different growth conditions. Further, the study attempted to investigate the effect of host genotype, host organs and plant growth conditions on the composition and distribution of fungi in wheat plant tissues. Comprehensive, high throughput analyzes of the diversity and community structure of the wheat mycobiome were performed, complemented by the simultaneous isolation of endophytic fungi, resulting in candidate strains for future research. The findings of the study revealed that the type of plant organs and growth conditions influence the wheat mycobiome. It was also assessed that fungi representing the genera Cladosporium, Penicillium, and Sarocladium form the core mycobiome of Polish spring and winter wheat cultivars. The coexistence of both symbiotic and pathogenic species in the internal tissues of wheat was also observed. Those commonly considered beneficial for plants can be used in further research as a valuable source of potential biological control factors and/or biostimulators of wheat plant growth

    Occurrence of Mycotoxigenic <i>Fusarium</i> Species and Competitive Fungi on Preharvest Maize Ear Rot in Poland

    No full text
    Maize has become one of the most important crops for food and feed production&#8212;both as a silage and crop residue worldwide. The present study aimed to identify the co-occurrence of Fusarium subglutinans, Fusarium verticillioides, Trichoderma atroviride, Sarocladium zeae, and Lecanicillium lecanii on maize ear rot. Further, the accumulation of mycotoxins as secondary metabolites of Fusarium spp. in maize ear samples was also analyzed. Maize ear samples were collected between 2014 and 2017 from two main maize growing areas in Poland (Greater Poland and Silesia region). A significant difference was found in the frequency of two main Fusarium spp. that infect maize ears, namely F. subglutinans and F. verticillioides. In addition to Fusarium spp. T. atroviride, S. zeae, and L. lecanii were also identified. T. atroviride species was found in 14% of maize samples examined between 2014 and 2017, particularly with a high percentage of Trichoderma spp. recorded in 2014, i.e., in 31% of samples. However, mycotoxin content (beauvericin and fumonisins) varied, depending on both the location and year of sampling. The interaction of fungi and insects inhabiting maize ear and kernel is very complex and not yet elucidated. Therefore, further research is required in this area

    <i>Sarocladium</i> and <i>Lecanicillium</i> Associated with Maize Seeds and Their Potential to Form Selected Secondary Metabolites

    No full text
    The occurrence and diversity of Lecanicillium and Sarocladium in maize seeds and their role in this cereal are poorly understood. Therefore, the present study aimed to investigate Sarocladium and Lecanicillium communities found in endosphere of maize seeds collected from fields in Poland and their potential to form selected bioactive substances. The sequencing of the internally transcribed spacer regions 1 (ITS 1) and 2 (ITS2) and the large-subunit (LSU, 28S) of the rRNA gene cluster resulted in the identification of 17 Sarocladium zeae strains, three Sarocladium strictum and five Lecanicillium lecanii isolates. The assay on solid substrate showed that S. zeae and S. strictum can synthesize bassianolide, vertilecanin A, vertilecanin A methyl ester, 2-decenedioic acid and 10-hydroxy-8-decenoic acid. This is also the first study revealing the ability of these two species to produce beauvericin and enniatin B1, respectively. Moreover, for the first time in the present investigation, pyrrocidine A and/or B have been annotated as metabolites of S. strictum and L. lecanii. The production of toxic, insecticidal and antibacterial compounds in cultures of S. strictum, S. zeae and L. lecanii suggests the requirement to revise the approach to study the biological role of fungi inhabiting maize seeds

    Sarocladium and Lecanicillium Associated with Maize Seeds and Their Potential to Form Selected Secondary Metabolites

    No full text
    The occurrence and diversity of Lecanicillium and Sarocladium in maize seeds and their role in this cereal are poorly understood. Therefore, the present study aimed to investigate Sarocladium and Lecanicillium communities found in endosphere of maize seeds collected from fields in Poland and their potential to form selected bioactive substances. The sequencing of the internally transcribed spacer regions 1 (ITS 1) and 2 (ITS2) and the large-subunit (LSU, 28S) of the rRNA gene cluster resulted in the identification of 17 Sarocladium zeae strains, three Sarocladium strictum and five Lecanicillium lecanii isolates. The assay on solid substrate showed that S. zeae and S. strictum can synthesize bassianolide, vertilecanin A, vertilecanin A methyl ester, 2-decenedioic acid and 10-hydroxy-8-decenoic acid. This is also the first study revealing the ability of these two species to produce beauvericin and enniatin B1, respectively. Moreover, for the first time in the present investigation, pyrrocidine A and/or B have been annotated as metabolites of S. strictum and L. lecanii. The production of toxic, insecticidal and antibacterial compounds in cultures of S. strictum, S. zeae and L. lecanii suggests the requirement to revise the approach to study the biological role of fungi inhabiting maize seeds

    Trichoderma spp. – application and prospects for use in organic farming and industry

    No full text
    Fungi of the genus Trichoderma are a very large group of microorganisms that play a significant role in the environment. They use a variety of mechanisms to colonise various ecological niches. Several Trichoderma spp. positively affect plants by stimulating plant growth, and protecting plants from fungal and bacterial pathogens. They are used in biological plant protection as biofungicides as well as in bioremediation. Members of the genus Trichoderma are also utilised in various industry branches – mainly in the production of enzymes, antibiotics, and other metabolites, but also of biofuel. Moreover, the genus Trichoderma comprises edible and medicinal mushrooms, but also the pathogens of humans. Currently, Trichoderma has entered the genomic era and parts of genome sequences are publicly available. This is why, Trichoderma fungi have the potential to be used for human needs to an even greater extent than before. Nevertheless, further studies are needed to increase the efficiency and safety of the application of these fungi
    corecore