148 research outputs found

    A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks

    Get PDF
    Simultaneous saccharification and fermentation (SSF) is one process option for production of ethanol from lignocellulose. The principal benefits of performing the enzymatic hydrolysis together with the fermentation, instead of in a separate step after the hydrolysis, are the reduced end-product inhibition of the enzymatic hydrolysis, and the reduced investment costs. The principal drawbacks, on the other hand, are the need to find favorable conditions (e.g. temperature and pH) for both the enzymatic hydrolysis and the fermentation and the difficulty to recycle the fermenting organism and the enzymes. To satisfy the first requirement, the temperature is normally kept below 37°C, whereas the difficulty to recycle the yeast makes it beneficial to operate with a low yeast concentration and at a high solid loading. In this review, we make a brief overview of recent experimental work and development of SSF using lignocellulosic feedstocks. Significant progress has been made with respect to increasing the substrate loading, decreasing the yeast concentration and co-fermentation of both hexoses and pentoses during SSF. Presently, an SSF process for e.g. wheat straw hydrolyzate can be expected to give final ethanol concentrations close to 40 g L-1 with a yield based on total hexoses and pentoses higher than 70%

    Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When scaling up lignocellulose-based ethanol production, the desire to increase the final ethanol titer after fermentation can introduce problems. A high concentration of water-insoluble solids (WIS) is needed in the enzymatic hydrolysis step, resulting in increased viscosity, which can cause mass and heat transfer problems because of poor mixing of the material. In the present study, the effects of mixing on the enzymatic hydrolysis of steam-pretreated spruce were investigated using a stirred tank reactor operated with different impeller speeds and enzyme loadings. In addition, the results were related to the power input needed to operate the impeller at different speeds, taking into account the changes in rheology throughout the process.</p> <p>Results</p> <p>A marked difference in hydrolysis rate at different impeller speeds was found. For example, the conversion was twice as high after 48 hours at 500 rpm compared with 25 rpm. This difference remained throughout the 96 hours of hydrolysis. Substantial amounts of energy were required to achieve only minor increases in conversion during the later stages of the process.</p> <p>Conclusions</p> <p>Impeller speed strongly affected both the hydrolysis rate of the pretreated spruce and needed power input. Similar conversions could be obtained at different energy input by altering the mixing (that is, energy input), enzyme load and residence time, an important issue to consider when designing large-scale plants.</p

    Prefermentation improves xylose utilization in simultaneous saccharification and co-fermentation of pretreated spruce

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simultaneous saccharification and fermentation (SSF) is a promising process option for ethanol production from lignocellulosic materials. However, both the overall ethanol yield and the final ethanol concentration in the fermentation broth must be high. Hence, almost complete conversion of both hexoses and pentoses must be achieved in SSF at a high solid content. A principal difficulty is to obtain an efficient pentose uptake in the presence of high glucose and inhibitor concentrations. Initial glucose present in pretreated spruce decreases the xylose utilization by yeast, due to competitive inhibition of sugar transport. In the current work, prefermentation was studied as a possible means to overcome the problem of competitive inhibition. The free hexoses, initially present in the slurry, were in these experiments fermented before adding the enzymes, thereby lowering the glucose concentration.</p> <p>Results</p> <p>This work shows that a high degree of xylose conversion and high ethanol yields can be achieved in SSF of pretreated spruce with a xylose fermenting strain of <it>Saccharomyces cerevisiae </it>(TMB3400) at 7% and 10% water insoluble solids (WIS). Prefermentation and fed-batch operation, both separately and in combination, improved xylose utilization. Up to 77% xylose utilization and 85% of theoretical ethanol yield (based on total sugars), giving a final ethanol concentration of 45 g L<sup>-1</sup>, were obtained in fed-batch SSF at 10% WIS when prefermentation was applied.</p> <p>Conclusion</p> <p>Clearly, the mode of fermentation has a high impact on the xylose conversion by yeast in SSF. Prefermentation enhances xylose uptake most likely because of the reduced transport inhibition, in both batch and fed-batch operation. The process significance of this will be even greater for xylose-rich feedstocks.</p

    A mutated xylose reductase increases bioethanol production more than a glucose/xylose facilitator in simultaneous fermentation and co-fermentation of wheat straw

    Get PDF
    Genetically engineered Saccharomyces cerevisiae strains are able to ferment xylose present in lignocellulosic biomass. However, better xylose fermenting strains are required to reach complete xylose uptake in simultaneous saccharification and co-fermentation (SSCF) of lignocellulosic hydrolyzates. In the current study, haploid Saccharomyces cerevisiae strains expressing a heterologous xylose pathway including either the native xylose reductase (XR) from P. stipitis, a mutated variant of XR (mXR) with altered co-factor preference, a glucose/xylose facilitator (Gxf1) from Candida intermedia or both mXR and Gxf1 were assessed in SSCF of acid-pretreated non-detoxified wheat straw. The xylose conversion in SSCF was doubled with the S. cerevisiae strain expressing mXR compared to the isogenic strain expressing the native XR, converting 76% and 38%, respectively. The xylitol yield was less than half using mXR in comparison with the native variant. As a result of this, the ethanol yield increased from 0.33 to 0.39 g g-1 when the native XR was replaced by mXR. In contrast, the expression of Gxf1 only slightly increased the xylose uptake, and did not increase the ethanol production. The results suggest that ethanolic xylose fermentation under SSCF conditions is controlled primarily by the XR activity and to a much lesser extent by xylose transport

    Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pichia stipitis </it>xylose reductase (Ps-XR) has been used to design <it>Saccharomyces cerevisiae </it>strains that are able to ferment xylose. One example is the industrial <it>S. cerevisiae </it>xylose-consuming strain TMB3400, which was constructed by expression of <it>P. stipitis </it>xylose reductase and xylitol dehydrogenase and overexpression of endogenous xylulose kinase in the industrial <it>S. cerevisiae </it>strain USM21.</p> <p>Results</p> <p>In this study, we demonstrate that strain TMB3400 not only converts xylose, but also displays higher tolerance to lignocellulosic hydrolysate during anaerobic batch fermentation as well as 3 times higher <it>in vitro </it>HMF and furfural reduction activity than the control strain USM21. Using laboratory strains producing various levels of Ps-XR, we confirm that Ps-XR is able to reduce HMF both <it>in vitro </it>and <it>in vivo</it>. Ps-XR overexpression increases the <it>in vivo </it>HMF conversion rate by approximately 20%, thereby improving yeast tolerance towards HMF. Further purification of Ps-XR shows that HMF is a substrate inhibitor of the enzyme.</p> <p>Conclusion</p> <p>We demonstrate for the first time that xylose reductase is also able to reduce the furaldehyde compounds that are present in undetoxified lignocellulosic hydrolysates. Possible implications of this newly characterized activity of Ps-XR on lignocellulosic hydrolysate fermentation are discussed.</p

    Overcoming extended lag phase on optically pure lactic acid production from pretreated softwood solids

    Get PDF
    Optically pure lactic acid (LA) is needed in PLA (poly-lactic acid) production to build a crystalline structure with a higher melting point of the biopolymer than that of the racemic mixture. Lignocellulosic biomass can be used as raw material for LA production, in a non-food biorefinery concept. In the present study, genetically engineered P. acidilactici ZP26 was cultivated in a simultaneous saccharification and fermentation (SSF) process using steam pretreated softwood solids as a carbon source to produce optically pure D-LA. Given the low concentrations of identifiable inhibitory compounds from sugar and lignin degradation, the fermentation rate was expected to follow the rate of enzymatic hydrolysis. However, added pretreated solids (7% on weight (w/w) of water-insoluble solids [WIS]) significantly and immediately affected the process performance, which resulted in a long lag phase (more than 40 h) before the onset of the exponential phase of the fermentation. This unexpected delay was also observed without the addition of enzymes in the SSF and in a model fermentation with glucose and pretreated solids without added enzymes. Experiments showed that it was possible to overcome the extended lag phase in the presence of pretreated softwood solids by allowing the microorganism to initiate its exponential phase in synthetic medium, and subsequently adding the softwood solids and enzymatic blend to proceed to an SSF with D-LA production

    Oxidative Depolymerization of Kraft Lignin for Microbial Conversion

    Get PDF
    The valorization of lignin is being increasingly recognized as crucial to improve the economic viability of integrated biorefineries. Because of its inherent heterogeneity and recalcitrance, lignin has been treated as a waste product in the pulp and paper industry, but new technologies are now being explored to transform lignin into a sustainable resource and enhance its value chain. In the present study, alkaline oxidative depolymerization was investigated as a potential form of pretreatment to enable further biological conversion of LignoBoost kraft lignin (LB). LB lignin oxidation reactions were studied at various temperatures (120-200 °C) and O2 partial pressures (3-15 bar) to identify the optimal conditions for obtaining a biocompatible, oxidatively depolymerized lignin (ODLB) stream. The low molecular weight compounds resulting from this treatment consisted mainly of aromatic monomers and carboxylic acids. The highest yield of aromatic monomers, 3 wt %, was obtained at 160 °C and 3 bar O2. The yield of carboxylic acids increased with both increasing temperature and O2 pressure, exceeding 13% under the harshest conditions investigated. The growth of four aromatic-catabolizing bacterial strains was examined on reaction product mixtures, all of which showed growth on agar plates utilizing ODLB as the sole source of carbon and energy. Rhodococcus opacus and Sphingobium sp. SYK-6 were found to consume most of the aromatic monomers present in the ODLB (e.g., vanillin, vanillate, acetovanillone, and guaiacol). The findings of this study indicate that pretreatment by oxidative depolymerization has potential in the biological valorization of technical lignin streams, for the production of valuable chemicals and materials

    Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simultaneous saccharification and co-fermentation (SSCF) has been recognized as a feasible option for ethanol production from xylose-rich lignocellulosic materials. To reach high ethanol concentration in the broth, a high content of water-insoluble solids (WIS) is needed, which creates mixing problems and, furthermore, may decrease xylose uptake. Feeding of substrate has already been proven to give a higher xylose conversion than a batch SSCF. In the current work, enzyme feeding, in addition to substrate feeding, was investigated as a means of enabling a higher WIS content with a high xylose conversion in SSCF of a xylose-rich material. A recombinant xylose-fermenting strain of <it>Saccharomyces cerevisiae </it>(TMB3400) was used for this purpose in fed-batch SSCF experiments of steam-pretreated wheat straw.</p> <p>Results</p> <p>By using both enzyme and substrate feeding, the xylose conversion in SSCF could be increased from 40% to 50% in comparison to substrate feeding only. In addition, by this design of the feeding strategy, it was possible to process a WIS content corresponding to 11% in SSCF and obtain an ethanol yield on fermentable sugars of 0.35 g g<sup>-1</sup>.</p> <p>Conclusion</p> <p>A combination of enzyme and substrate feeding was shown to enhance xylose uptake by yeast and increase overall ethanol yield in SSCF. This is conceptually important for the design of novel SSCF processes aiming at high-ethanol titers. Substrate feeding prevents viscosity from becoming too high and thereby allows a higher total amount of WIS to be added in the process. The enzyme feeding, furthermore, enables keeping the glucose concentration low, which kinetically favors xylose uptake and results in a higher xylose conversion.</p

    Carboxylic Acid Production

    No full text
    Carboxylic acids are central compounds in cellular metabolism, and in the carbon cycle in nature.[...

    Understanding the bioreactor

    No full text
    Analysis of bioreactors is central for successful design and operation of biotechnical processes. The bioreactor should provide optimum conditions, with respect to temperature, pH and substrate condition, for example, besides its basic function of containment. The ability to control the substrate concentration is an important function of the bioreactor. The substrate concentration can be subject to spatial variation-advertently or inadvertently and may also change with time in batch or fed-batch operation. The cellular metabolism will depend on local concentrations in the reactor, as well as on the physiological status of the cell. in order to understand the bioreactor operation, cellular metabolism must be considered together with the flow profile and the mass transfer characteristics of the bioreactor. Some fundamental aspects of bioreactor operation for yeast and bacterial cultivations are discussed in this short review
    corecore