29 research outputs found

    The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is "Inflammation" Always Inflammation?

    Get PDF
    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of "proinflammatory" cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine "inflammation"? In this review, we discuss the functions of "inflammatory" mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury

    The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is “Inflammation” Always Inflammation?

    Get PDF
    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of “proinflammatory” cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine “inflammation”? In this review, we discuss the functions of “inflammatory” mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury

    Focal adhesion kinase regulates the activity of the osmosensitive transcription factor TonEBP/NFAT5 under hypertonic conditions

    Get PDF
    Ton EBP/NFAT5 is a major regulator of the urinary concentrating process and is essential for the osmoadaptation of renal medullary cells. Focal adhesion kinase (FAK) is a mechanosensitive non-receptor protein tyrosine kinase expressed abundantly in the renal medulla. Since osmotic stress causes cell shrinkage, the present study investigated the contribution of FAK on TonEBP/NFAT5 activation. Osmotic stress induced time-dependent activation of FAK as evidenced by phosphorylation at Tyr-397, and furosemide reduces FAK Tyr-397 phosphorylation in the rat renal medulla. Both pharmacological inhibition of FAK and siRNA-mediated knockdown of FAK drastically reduced TonEBP/NFAT5 transcriptional activity and target gene expression in HEK293 cells. This effect was not mediated by impaired nuclear translocation or by reduced transactivating activity of TonEBP/NFAT5. However, TonEBP/NFAT5 abundance under hypertonic conditions was diminished by 50% by FAK inhibition or siRNA knockdown of FAK. FAK inhibition only marginally reduced transcription of the TonEBP/NFAT5 gene. Rather, TonEBP/NFAT5 mRNA stability was diminished significantly by FAK inhibition, which correlated with reduced reporter activity of the TonEBP/NFAT5 mRNA 3' untranslated region (3'-UTR). In conclusion, FAK is a major regulator of TonEBP/NFAT5 activity by increasing its abundance via stabilization of the mRNA. This in turn, depends on the presence of the TonEBP/NFAT5 3'-UTR

    IRF8-Dependent Type I Conventional Dendritic Cells (cDC1s) Control Post-Ischemic Inflammation and Mildly Protect Against Post-Ischemic Acute Kidney Injury and Disease

    Get PDF
    Post-ischemic acute kidney injury and disease (AKI/AKD) involve acute tubular necrosis and irreversible nephron loss. Mononuclear phagocytes including conventional dendritic cells (cDCs) are present during different phases of injury and repair, but the functional contribution of this subset remains controversial. Transcription factor interferon regulatory factor 8 (IRF8) is required for the development of type I conventional dendritic cells (cDC1s) lineage and helps to define distinct cDC1 subsets. We identified one distinct subset among mononuclear phagocyte subsets according to the expression patterns of CD11b and CD11c in healthy kidney and lymphoid organs, of which IRF8 was significantly expressed in the CD11blowCD11chigh subset that mainly comprised cDC1s. Next, we applied a Irf8-deficient mouse line (Irf8fl/flClec9acre mice) to specifically target Clec9a-expressing cDC1s in vivo. During post-ischemic AKI/AKD, these mice lacked cDC1s in the kidney without affecting cDC2s. The absence of cDC1s mildly aggravated the loss of living primary tubule and decline of kidney function, which was associated with decreased anti-inflammatory Tregs-related immune responses, but increased T helper type 1 (TH1)-related and pro-inflammatory cytokines, infiltrating neutrophils and acute tubular cell death, while we also observed a reduced number of cytotoxic CD8+ T cells in the kidney when cDC1s were absent. Together, our data show that IRF8 is indispensable for kidney cDC1s. Kidney cDC1s mildly protect against post-ischemic AKI/AKD, probably via suppressing tissue inflammation and damage, which implies an immunoregulatory role for cDC1s

    Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming

    Get PDF
    Objectives: Major histocompatibility complex (MHC) class II-mediated priming of T and B lymphocytes is a central element of autoimmunity in systemic lupus erythematosus (SLE) and lupus nephritis. The cysteine protease cathepsin S degrades the invariant peptide chain during MHC II assembly with antigenic peptide in antigen-presenting cells; therefore, we hypothesised that cathepsin S inhibition would be therapeutic in SLE. Methods: We developed a highly specific small molecule, orally available, cathepsin S antagonist, RO5461111, with suitable pharmacodynamic and pharmacokinetic properties that efficiently suppressed antigen-specific T cell and B cell priming in vitro and in vivo. Results: When given to MRL-Fas(lpr) mice with SLE and lupus nephritis, RO5461111 significantly reduced the activation of spleen dendritic cells and the subsequent expansion and activation of CD4 T cells and CD4/CD8 double-negative T cells. Cathepsin S inhibition impaired the spatial organisation of germinal centres, suppressed follicular B cell maturation to plasma cells and Ig class switch. This reversed hypergammaglobulinemia and significantly suppressed the plasma levels of numerous IgG (but not IgM) autoantibodies below baseline, including anti-dsDNA. This effect was associated with less glomerular IgG deposits, which protected kidneys from lupus nephritis. Conclusions: Together, cathepsin S promotes SLE by driving MHC class II-mediated T and B cell priming, germinal centre formation and B cell maturation towards plasma cells. These afferent immune pathways can be specifically reversed with the cathepsin S antagonist RO5461111, which prevents lupus nephritis progression even when given after disease onset. This novel therapeutic strategy could correct a common pathomechanism of SLE and other immune complex-related autoimmune diseases

    Anti-GBM Glomerulonephritis Involves IL-1 but Is Independent of NLRP3/ASC Inflammasome-Mediated Activation of Caspase-1

    Get PDF
    IL-1β and IL-18 are proinflammatory cytokines that contribute to renal immune complex disease, but whether IL-1β and IL-18 are mediators of intrinsic glomerular inflammation is unknown. In contrast to other cytokines the secretion of IL-1β and IL-18 requires a second stimulus that activates the inflammasome-ASC-caspase-1 pathway to cleave pro-IL-1β and -IL-18 into their mature and secretable forms. As the NLRP3 inflammasome and caspase-1 were shown to contribute to postischemic and postobstructive tubulointerstitial inflammation, we hypothesized a similar role for NLRP3, ASC, and caspase-1 in glomerular immunopathology. This concept was supported by the finding that lack of IL-1R1 reduced antiserum-induced focal segmental necrosis, crescent formation, and tubular atrophy when compared to wildtype mice. Lack of IL-18 reduced tubular atrophy only. However, NLRP3-, ASC- or caspase-1-deficiency had no significant effect on renal histopathology or proteinuria of serum nephritis. In vitro studies with mouse glomeruli or mesangial cells, glomerular endothelial cells, and podocytes did not reveal any pro-IL-1β induction upon LPS stimulation and no caspase-1 activation after an additional exposure to the NLRP3 agonist ATP. Only renal dendritic cells, which reside mainly in the tubulointerstitium, expressed pro-IL-1β and were able to activate the NLRP3-caspase-1 axis and secrete mature IL-1β. Together, the NLRP3-ASC-caspase-1 axis does not contribute to intrinsic glomerular inflammation via glomerular parenchymal cells as these cannot produce IL-1β during sterile inflammation

    Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes account for organ injury, regeneration or atrophy

    Get PDF
    Mononuclear phagocytes (MP), i.e., monocytes, macrophages, and dendritic cells (DCs), are essential for immune homeostasis via their capacities to clear pathogens, pathogen components, and non-infectious particles. However, tissue injury-related changes in local microenvironments activate resident and infiltrating MP towards pro-inflammatory phenotypes that contribute to inflammation by secreting additional inflammatory mediators. Efficient control of injurious factors leads to a switch of MP phenotype, which changes the microenvironment towards the resolution of inflammation. In the same way, MP endorses adaptive structural responses leading to either compensatory hypertrophy of surviving cells, tissue regeneration from local tissue progenitor cells, or tissue fibrosis and atrophy. Under certain circumstances, MP contribute to the reversal of tissue fibrosis by clearance of the extracellular matrix. Here we give an update on the tissue microenvironment-related factors that, upon tissue injury, instruct resident and infiltrating MP how to support host defense and recover tissue function and integrity. We propose that MP are not intrinsically active drivers of organ injury and dysfunction but dynamic amplifiers (and biomarkers) of specific tissue microenvironments that vary across spatial and temporal contexts. Therefore, MP receptors are frequently redundant and suboptimal targets for specific therapeutic interventions compared to molecular targets upstream in adaptive humoral or cellular stress response pathways that influence tissue milieus at a contextual level

    Viral RNA and DNA Trigger Common Antiviral Responses in Mesangial Cells

    No full text
    Extrarenal viral infections commonly trigger glomerulonephritis, usually in association with immune complex disease. The Ig component of immune complexes can activate glomerular cell Fc receptors, but whether complexed viral nucleic acids contribute to glomerular inflammation remains unknown. Because of the types of Toll-like receptors (Tlrs) expressed by glomerular mesangial cells, we hypothesized that viral single-stranded RNA and DNA would activate mesangial cells via Tlr-independent pathways and trigger overlapping antiviral immune responses. Consistent with this hypothesis, 5′-triphosphate RNA (3P-RNA) and non-CpG DNA activated murine primary glomerular mesangial cells to secrete Cxcl10 and Il-6 even in cells derived from mice deficient in the Tlr adaptor proteins Myd88 and Trif. Transcriptome analysis revealed that 3P-RNA and non-CpG-DNA triggered almost identical gene expression programs, especially the proinflammatory cytokine Il-6, several chemokines, and genes related to type I IFN. We observed similar findings in glomerular preparations after injecting 3P-RNA and non-CpG-DNA in vivo. These effects depended on the formation of complexes with cationic lipids, which enhanced nucleic acid uptake into the cytosol of mesangial cells. Small interfering RNA studies revealed that 3P-RNA recognition involves Rig-1, whereas non-CpG-DNA did not require Rig-1 or Dai to activate glomerular mesangial cells. We conclude that 3P-RNA and double-stranded DNA trigger a common, TLR-independent, antiviral response in glomerular mesangial cells, which may promote glomerulonephritis in the setting of viral infection
    corecore