76 research outputs found
Exact solution of Kerr black hole perturbations via CFT2 and instanton counting: Greybody factor, quasinormal modes, and Love numbers
We give explicit expressions for the finite frequency greybody factor, quasinormal modes, and Love numbers of Kerr black holes by computing the exact connection coefficients of the radial and angular parts of the Teukolsky equation. This is obtained by solving the connection problem of the confluent Heun equation in terms of the explicit expression of irregular Virasoro conformal blocks as sums over partitions via the Alday, Gaiotto, and Tachikawa correspondence. In the relevant approximation limits our results are in agreement with existing literature. The method we use can be extended to solve the linearized Einstein equation in other interesting gravitational backgrounds
Common variants in signaling transcription-factor-binding sites drive phenotypic variability in red blood cell traits
Genome-wide association studies identify genomic variants associated with human traits and diseases. Most trait-associated variants are located within cell-type-specific enhancers, but the molecular mechanisms governing phenotypic variation are less well understood. Here, we show that many enhancer variants associated with red blood cell (RBC) traits map to enhancers that are co-bound by lineage-specific master transcription factors (MTFs) and signaling transcription factors (STFs) responsive to extracellular signals. The majority of enhancer variants reside on STF and not MTF motifs, perturbing DNA binding by various STFs (BMP/TGF-β-directed SMADs or WNT-induced TCFs) and affecting target gene expression. Analyses of engineered human blood cells and expression quantitative trait loci verify that disrupted STF binding leads to altered gene expression. Our results propose that the majority of the RBC-trait-associated variants that reside on transcription-factor-binding sequences fall in STF target sequences, suggesting that the phenotypic variation of RBC traits could stem from altered responsiveness to extracellular stimuli
Human Papillomavirus (HPV) 16 E6 Variants in Tonsillar Cancer in Comparison to Those in Cervical Cancer in Stockholm, Sweden
Background: Human papillomavirus (HPV), especially HPV16, is associated with the development of both cervical and tonsillar cancer and intratype variants in the amino acid sequence of the HPV16 E6 oncoprotein have been demonstrated to be associated with viral persistence and cancer lesions. For this reason the presence of HPV16 E6 variants in tonsillar squamous cell carcinoma (TSCC) in cervical cancer (CC), as well as in cervical samples (CS), were explored. Methods: HPV16 E6 was sequenced in 108 TSCC and 52 CC samples from patients diagnosed 2000–2008 in the County of Stockholm, and in 51 CS from young women attending a youth health center in Stockholm. Results: The rare E6 variant R10G was relatively frequent (19%) in TSCC, absent in CC and infrequent (4%) in CS, while the well-known L83V variant was common in TSCC (40%), CC (31%), and CS (29%). The difference for R10G was significant between TSCC and CC (p = 0.0003), as well as between TSCC and CS (p = 0.009). The HPV16 European phylogenetic lineage and its derivatives dominated in all samples (.90%). Conclusion: The relatively high frequency of the R10G variant in TSCC, as compared to what has been found in CC both in the present study as well as in several other studies in different countries, may indicate a difference between TSCC and CC with regard to tumor induction and development. Alternatively, there could be differences with regard to the oral an
Interaction between polymorphisms of the Human Leukocyte Antigen and HPV-16 Variants on the risk of invasive cervical cancer
<p>Abstract</p> <p>Background</p> <p>Persistent infection with oncogenic types of human papillomavirus (HPV) is the major risk factor for invasive cervical cancer (ICC), and non-European variants of HPV-16 are associated with an increased risk of persistence and ICC. HLA class II polymorphisms are also associated with genetic susceptibility to ICC. Our aim is to verify if these associations are influenced by HPV-16 variability.</p> <p>Methods</p> <p>We characterized HPV-16 variants by PCR in 107 ICC cases, which were typed for <it>HLA-DQA1</it>, <it>DRB1 </it>and <it>DQB1 </it>genes and compared to 257 controls. We measured the magnitude of associations by logistic regression analysis.</p> <p>Results</p> <p>European (E), Asian-American (AA) and African (Af) variants were identified. Here we show that inverse association between <it>DQB1*05 </it>(adjusted odds ratio [OR] = 0.66; 95% confidence interval [CI]: 0.39–1.12]) and HPV-16 positive ICC in our previous report was mostly attributable to AA variant carriers (OR = 0.27; 95%CI: 0.10–0.75). We observed similar proportions of <it>HLA DRB1*1302 </it>carriers in E-P positive cases and controls, but interestingly, this allele was not found in AA cases (p = 0.03, Fisher exact test). A positive association with <it>DRB1*15 </it>was observed in both groups of women harboring either E (OR = 2.99; 95% CI: 1.13–7.86) or AA variants (OR = 2.34; 95% CI: 1.00–5.46). There was an inverse association between <it>DRB1*04 </it>and ICC among women with HPV-16 carrying the 350T [83L] single nucleotide polymorphism in the <it>E6 </it>gene (OR = 0.27; 95% CI: 0.08–0.96). An inverse association between <it>DQB1*05 </it>and cases carrying 350G (83V) variants was also found (OR = 0.37; 95% CI: 0.15–0.89).</p> <p>Conclusion</p> <p>Our results suggest that the association between HLA polymorphism and risk of ICC might be influenced by the distribution of HPV-16 variants.</p
Transcription factor induction of vascular blood stem cell niches in vivo
The hematopoietic niche is a supportive microenvironment composed of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses in zebrafish, we define a conserved gene expression signature and cis-regulatory landscape that are unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code that involves members of the Ets, Sox, and nuclear hormone receptor families and is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance, and division of HSPCs in vivo. These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo, and for effective therapies to modulate the endogenous niche
Transcription factor induction of vascular blood stem cell niches in vivo
The hematopoietic niche is a supportive microenvironment composed of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses in zebrafish, we define a conserved gene expression signature and cis-regulatory landscape that are unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code that involves members of the Ets, Sox, and nuclear hormone receptor families and is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance, and division of HSPCs in vivo. These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo, and for effective therapies to modulate the endogenous niche
- …