22 research outputs found

    Vegetative and Adaptive Traits Predict Different Outcomes for Restoration Using Hybrids

    Get PDF
    Hybridization has been implicated as a driver of speciation, extinction, and invasiveness, but can also provide resistant breeding stock following epidemics. However, evaluating the appropriateness of hybrids for use in restoration programs is difficult. Past the F1 generation, the proportion of a progenitor’s genome can vary widely, as can the combinations of parental genomes. Detailed genetic analysis can reveal this information, but cannot expose phenotypic alterations due to heterosis, transgressive traits, or changes in metabolism or development. In addition, because evolution is often driven by extreme individuals, decisions based on phenotypic averages of hybrid classes may have unintended results. We demonstrate a strategy to evaluate hybrids for use in restoration by visualizing hybrid phenotypes across selected groups of traits relative to both progenitor species. Specifically, we used discriminant analysis to differentiate among butternut (Juglans cinerea L.), black walnut (J. nigra L.), and Japanese walnut (J. ailantifolia Carr. var. cordiformis) using vegetative characters and then with functional adaptive traits associated with seedling performance. When projected onto the progenitor trait space, naturally occurring hybrids (J. × bixbyi Rehd.) between butternut and Japanese walnut showed introgression toward Japanese walnut at vegetative characters but exhibited a hybrid swarm at functional traits. Both results indicate that hybrids have morphological and ecological phenotypes that distinguish them from butternut, demonstrating a lack of ecological equivalency that should not be carried into restoration breeding efforts. Despite these discrepancies, some hybrids were projected into the space occupied by butternut seedlings’ 95% confidence ellipse, signifying that some hybrids were similar at the measured traits. Determining how to consistently identify these individuals is imperative for future breeding and species restoration efforts involving hybrids. Discriminant analysis provides a useful technique to visualize past selection mechanisms and current variation in hybrid populations, especially when key ecological traits that distinguish progenitors are unknown. Furthermore, discriminant analysis affords a tool to assess ecological equivalency of hybrid populations and breeding program efforts to select for certain traits and monitor the amount of variability of those traits, relative to progenitors

    Consequences of Intraspecific Variation in Seed Dispersal for Plant Demography, Communities, Evolution and Global Change

    Get PDF
    As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward

    Consequences of Intraspecific Variation in Seed Dispersal for Plant Demography, Communities, Evolution and Global Change

    Get PDF
    As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward

    Do Dispersing Monkeys Follow Kin? Evidence from Gray-cheeked Mangabeys (Lophocebus albigena)

    Get PDF
    Among social vertebrates, immigrants may incur a substantial fitness cost when they attempt to join a new group. Dispersers could reduce that cost, or increase their probability of mating via coalition formation, by immigrating into groups containing first- or second-degree relatives. We here examine whether dispersing males tend to move into groups containing fathers or brothers in gray-cheeked mangabeys (Lophocebus albigena) in Kibale National Park, Uganda. We sampled blood from 21 subadult and adult male mangabeys in 7 social groups and genotyped them at 17 microsatellite loci. Twelve genotyped males dispersed to groups containing other genotyped adult males during the study; in only 1 case did the group contain a probable male relative. Contrary to the prediction that dispersing males would follow kin, relatively few adult male dyads were likely first- or second-degree relatives; opportunities for kin-biased dispersal by mangabeys appear to be rare. During 4 yr of observation, adult brothers shared a group only once, and for only 6 wk. Mean relatedness among adult males sharing a group was lower than that among males in different groups. Randomization tests indicate that closely related males share groups no more often than expected by chance, although these tests had limited power. We suggest that the demographic conditions that allow kin-biased dispersal to evolve do not occur in mangabeys, may be unusual among primates, and are worth further attention

    Selection Ratios on Community Aggregated Traits to Estimate Ecological Filters Imposed on Species by Sites

    Get PDF
    Variation in community structure is mediated by interactions between species traits and a site\u27s environmental characteristics. Previously, data on community composition at sites has been employed to correlate trait and environmental variables (e.g., RLQ analysis) and to predict community-level expression of quantitative traits (i.e., community aggregated traits). Here, we demonstrate that the selection ratio, a method originating in animal resource selection studies, can estimate the ecological filters that site conditions impose on species traits by combining observed community aggregated traits with null models of species availability. This flexible, nonparametric approach expresses the filter at each site as a probability density function for the selection of individuals possessing a given trait value. By doing so, it generalizes the community aggregated trait concept to include categorical as well as continuous traits and allows for both intraspecific variation in trait expression and differences in species availability among sites. The resulting site-level filter functions can be related to environmental covariates by standard statistical approaches (e.g., regression). The method complements existing techniques for analyzing trait-environment interactions in community ecology

    Appendix A. Estimating ecological filters with selection ratios and community aggregated traits.

    Full text link
    Estimating ecological filters with selection ratios and community aggregated traits

    Supplement 2. Data for examples of selection ratio analysis on community aggregated traits (SRCAT).

    Full text link
    <h2>File List</h2><blockquote> <p><a href="pdxherbs.csv">pdxherbs.csv</a> -- Herb community data for Portland, Oregon greenspaces</p> </blockquote><h2>Description</h2><blockquote> <p>Data on the relative importance of 76 herb species in 47 forested greenspaces in Portland, Oregon, USA. The data are stored as a comma-separated text (.csv) file. The first row contains species codes and the first column contains site identifiers. The second column contains the variable popdens which is the population density in a 100-m buffer around each site (people/ha). The final 2 rows of the file contain dummy codes (0/1) indicating whether each species is native or nonnative to western Oregon.</p> <p>Checksum values are as follows:</p> -- TABLE: Please see in attached file. -- </blockquote

    Differential Response of Migratory Guilds of Birds to Park Area and Urbanization

    Full text link
    Variation in species richness and density of native birds in urban parks and greenspaces (“parks”) is often substantial. Understanding why differences exist, and whether all migratory guilds are equally affected, is poorly known. We surveyed breeding bird communities in 48 undeveloped forested parks in Portland, Oregon, USA, to determine the contributions of park area, shape, connectivity, landscape composition surrounding parks, and differences in structure/composition of local habitat to variation in richness and density of residents, long-distance migrants, and short-distance/partial migrants. Migratory guilds responded differently to environmental factors. Richness and density of long-distance migrants increased with park area and abundance of small (\u3c 10 cm DBH), mostly native, tree species. Resident richness also increased with the abundance of small trees. However, resident and short-distance/partial migrant richness was independent of park area, and resident density declined with increasing area. Park shape, connectivity, and landscape composition did not influence richness or density of any migratory guilds, possibly because of relatively high tree cover in Portland’s landscape. Separate analyses of forest-dependent species of all migratory guilds revealed that area was the primary contributor to variation in density of residents and long-distance migrants, structural habitat features contributed to variation in density of residents but not long-distance migrants, and that density of long-distance migrants declined with elongated park shape. Few forest-dependent species existed in parks below 10 ha, and their minimum area requirements for maintaining populations were estimated to be 30 to 40 ha. Without such parks most long-distance migrants would likely disappear from Portland’s landscape

    Data from: Scatterhoarders drive long- and short-term population dynamics of a nut-producing tree, while pre-dispersal seed predators and herbivores have little effect

    Full text link
    1.Both seed predators and herbivores can have profound effects on individual plant growth, reproduction and survival, but their population level effects are less well understood. While most plants interact with a suite of seed predators and herbivores over their life cycle, few studies incorporate the effects of multiple interacting partners and multiple life stages on plant population growth. 2.We constructed a matrix model using six years of data from a rare, seed-producing population of American chestnut (Castanea dentata). We combined field demographic data with published experimental results on the effects of pre-dispersal seed predators (weevils) and post-dispersal seed predators (scatter-hoarding vertebrates) and incorporated the effect of vertebrate herbivores estimated from the field data. We explored the impact of these three different animal interactions for short-term (transient) and long-term (asymptotic) tree population growth. In addition, we used the model to explore the conditions under which scatter-hoarding would function as a mutualism. 3.Seed predators had greater effect on both short- and long-term population growth than herbivores. Although weevil infestation can greatly reduce the probability of germination, pre-dispersal seed predators had smaller effects on both short- or long-term population growth than post-dispersal predators. The elasticities of weevil-related parameters were also small. The effect of browsers on both the short- and long-term population growth rate were the smallest of the effects studied. Post-dispersal seed predation affected population growth the most of the interactions studied. The probability of seed removal was amongst the largest elasticities, similar in magnitude to survival of large trees. 4.Synthesis Our results indicate that neither weevils nor the intensity of browse damage observed at our study site are likely to hinder tree regeneration or reintroduction, though both reduced population growth. Although researchers and forest managers often assume that seeds are unimportant for long-lived tree populations, our test of this assumption shows that scatterhoarders and other post-dispersal seed consumers can significantly limit natural regeneration. Forest management that alters scatterhoarder behaviour could have significant effects on tree population dynamics that are largely unexplored
    corecore