1,614 research outputs found

    Calculation of Superdiffusion for the Chirikov-Taylor Model

    Full text link
    It is widely known that the paradigmatic Chirikov-Taylor model presents enhanced diffusion for specific intervals of its stochasticity parameter due to islands of stability, which are elliptic orbits surrounding accelerator mode fixed points. In contrast with normal diffusion, its effect has never been analytically calculated. Here, we introduce a differential form for the Perron-Frobenius evolution operator in which normal diffusion and superdiffusion are treated separately through phases formed by angular wave numbers. The superdiffusion coefficient is then calculated analytically resulting in a Schloemilch series with an exponent β=3/2\beta=3/2 for the divergences. Numerical simulations support our results.Comment: 4 pages, 2 figures (revised version

    Validity of the CAGE in Screening for Problem Drinking in College Students

    Get PDF
    This item is copyright by the Johns Hopkins University Press.No abstract is available for this item

    Delocalization transition of a small number of particles in a box with periodic boundary conditions

    Full text link
    We perform molecular dynamics simulation of a small number of particles in a box with periodic boundary conditions from a view point of chaotic dynamical systems. There is a transition at a critical energy E_c that each particle is confined in each unit cell for E<E_c, and the chaotic diffusion occurs for E>E_c. We find an anomalous behavior of the jump frequency above the critical energy in a two-particle system, which is related with the infinitely alternating stability change of the straight motion passing through a saddle point. We find simultaneous jump motions just above the critical energy in a four-particle system and sixteen-particle system, which is also related with the motion passing through the saddle point.Comment: 9 pages, 10 figure

    Production of Enhanced Beam Halos via Collective Modes and Colored Noise

    Full text link
    We investigate how collective modes and colored noise conspire to produce a beam halo with much larger amplitude than could be generated by either phenomenon separately. The collective modes are lowest-order radial eigenmodes calculated self-consistently for a configuration corresponding to a direct-current, cylindrically symmetric, warm-fluid Kapchinskij-Vladimirskij equilibrium. The colored noise arises from unavoidable machine errors and influences the internal space-charge force. Its presence quickly launches statistically rare particles to ever-growing amplitudes by continually kicking them back into phase with the collective-mode oscillations. The halo amplitude is essentially the same for purely radial orbits as for orbits that are initially purely azimuthal; orbital angular momentum has no statistically significant impact. Factors that do have an impact include the amplitudes of the collective modes and the strength and autocorrelation time of the colored noise. The underlying dynamics ensues because the noise breaks the Kolmogorov-Arnol'd-Moser tori that otherwise would confine the beam. These tori are fragile; even very weak noise will eventually break them, though the time scale for their disintegration depends on the noise strength. Both collective modes and noise are therefore centrally important to the dynamics of halo formation in real beams.Comment: For full resolution pictures please go to http://www.nicadd.niu.edu/research/beams

    Fractal Weyl law for chaotic microcavities: Fresnel's laws imply multifractal scattering

    Full text link
    We demonstrate that the harmonic inversion technique is a powerful tool to analyze the spectral properties of optical microcavities. As an interesting example we study the statistical properties of complex frequencies of the fully chaotic microstadium. We show that the conjectured fractal Weyl law for open chaotic systems [W. T. Lu, S. Sridhar, and M. Zworski, Phys. Rev. Lett. 91, 154101 (2003)] is valid for dielectric microcavities only if the concept of the chaotic repeller is extended to a multifractal by incorporating Fresnel's laws.Comment: 8 pages, 12 figure

    The phase plane of moving discrete breathers

    Full text link
    We study anharmonic localization in a periodic five atom chain with quadratic-quartic spring potential. We use discrete symmetries to eliminate the degeneracies of the harmonic chain and easily find periodic orbits. We apply linear stability analysis to measure the frequency of phonon-like disturbances in the presence of breathers and to analyze the instabilities of breathers. We visualize the phase plane of breather motion directly and develop a technique for exciting pinned and moving breathers. We observe long-lived breathers that move chaotically and a global transition to chaos that prevents forming moving breathers at high energies.Comment: 8 pages text, 4 figures, submitted to Physical Review Letters. See http://www.msc.cornell.edu/~houle/localization

    Surface Critical Behavior of Binary Alloys and Antiferromagnets: Dependence of the Universality Class on Surface Orientation

    Full text link
    The surface critical behavior of semi-infinite (a) binary alloys with a continuous order-disorder transition and (b) Ising antiferromagnets in the presence of a magnetic field is considered. In contrast to ferromagnets, the surface universality class of these systems depends on the orientation of the surface with respect to the crystal axes. There is ordinary and extraordinary surface critical behavior for orientations that preserve and break the two-sublattice symmetry, respectively. This is confirmed by transfer-matrix calculations for the two-dimensional antiferromagnet and other evidence.Comment: Final version that appeared in PRL, some minor stylistic changes and one corrected formula; 4 pp., twocolumn, REVTeX, 3 eps fig

    Phase Space Formulation of Quantum Mechanics. Insight into the Measurement Problem

    Full text link
    A phase space mathematical formulation of quantum mechanical processes accompanied by and ontological interpretation is presented in an axiomatic form. The problem of quantum measurement, including that of quantum state filtering, is treated in detail. Unlike standard quantum theory both quantum and classical measuring device can be accommodated by the present approach to solve the quantum measurement problemComment: 29 pages, 4 figure

    Generic spectral properties of right triangle billiards

    Full text link
    This article presents a new method to calculate eigenvalues of right triangle billiards. Its efficiency is comparable to the boundary integral method and more recently developed variants. Its simplicity and explicitness however allow new insight into the statistical properties of the spectra. We analyse numerically the correlations in level sequences at high level numbers (>10^5) for several examples of right triangle billiards. We find that the strength of the correlations is closely related to the genus of the invariant surface of the classical billiard flow. Surprisingly, the genus plays and important role on the quantum level also. Based on this observation a mechanism is discussed, which may explain the particular quantum-classical correspondence in right triangle billiards. Though this class of systems is rather small, it contains examples for integrable, pseudo integrable, and non integrable (ergodic, mixing) dynamics, so that the results might be relevant in a more general context.Comment: 18 pages, 8 eps-figures, revised: stylistic changes, improved presentatio
    • …
    corecore