27 research outputs found

    Are CVD Patients Under Oxidative Stress?

    Get PDF

    Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles

    Get PDF
    AbstractThe phase behavior of mixtures of phospholipids and detergents in aqueous solutions is an issue of basic importance for understanding the solubilization and reconstitution of biological membranes. We review the existing knowledge on the compositionally induced reversible transformation of phospholipid bilayers into lipid-detergent mixed micelles. First, we describe the experimental protocols used for preparation of such mixtures and emphasize the scope and limitations of the various techniques used for evaluation of the microstructures of the self-assembled amphiphiles in the mixture. Subsequently, we interpret the existing data in terms of the spontaneous curvature of the amphiphiles and the finite size of the mixed micelles. These considerations lead to a general description of the phase behavior, which forms the basis for a rational approach to solubilization and reconstitution experiments

    Direct visualization of lipid aggregates in native human bile by light- and cryo-transmission electron-microscopy

    Get PDF
    AbstractThe evolution of microstructures present in human gallbladder and hepatic bile was observed simultaneously by video-enhanced light microscopy (VELM) and transmission electron microscopy of vitrified specimens (cryo-TEM), as a function of time after withdrawal from patients. Fresh centrifuged gallbladder bile samples contained small (6 nm) spherical micelles in coexistence with vesicles (40 nm). Out of the seven bile samples investigated four contained, in addition, two types of elongated aggregates that have not been previously described. Uncentrifuged gallbladder bile also contained a mixture of ribbon- and plate-like crystals seen by VELM, but not by cryo-TEM. In aged (3–6-week-old) gallbladder bile samples VELM also revealed spiral and helical crystal structures. No such crystals were present in hepatic bile samples, although microcrystals, not observable by VELM were seen by cryo-TEM in addition to micelles and vesicles. The similarity of these observations to those observed in bile models lends strong support for the validity of the model systems. Furthermore, the presence of microcrystals in hepatic bile samples, apparently devoid of crystals by light microscopy, indicates that under certain conditions the common criterion of ‘nueleation time’ (NT), based on light microscopy, does not represent the real time of nucleation. In the human bile samples investigated in this study the dissociation between NT and the time of observation of microcrystals was seen in hepatic but not in gallbladder bile samples. Hence, crystal growth may be rate limiting only in dilute biles

    In Healthy Young Men, a Short Exhaustive Exercise Alters the Oxidative Stress Only Slightly, Independent of the Actual Fitness

    No full text
    The aim of the present study was to evaluate the apparent disagreement regarding the effect of a typical cycling progressive exercise, commonly used to assess VO2max, on the kinetics of ex vivo copper induced peroxidation of serum lipids. Thirty-two (32) healthy young men, aged 24–30 years, who do not smoke and do not take any food supplements, participated in the study. Blood was withdrawn from each participant at three time points (before the exercise and 5 minutes and one hour after exercise). Copper induced peroxidation of sera made of the blood samples was monitored by spectrophotometry. For comparison, we also assayed TBARS concentration and the activity of oxidation-related enzymes. The physical exercise resulted in a slight and reversible increase of TBARS and slight changes in the activities of the studied antioxidant enzymes and the lag preceding peroxidation did not change substantially. Most altered parameters returned to baseline level one hour after exercise. Notably, the exercise-induced changes in OS did not correlate with the physical fitness of the subjects, as evaluated in this study (VO2max = 30–60 mL/min/kg). We conclude that in healthy young fit men a short exhaustive exercise alters only slightly the OS, independent of the actual physical fitness

    Exercise Alters the Oxidative Stress Only Slightly, Independent of the Actual Fitness

    No full text
    The aim of the present study was to evaluate the apparent disagreement regarding the effect of a typical cycling progressive exercise, commonly used to assess VO 2max , on the kinetics of ex vivo copper induced peroxidation of serum lipids. Thirty-two (32) healthy young men, aged 24-30 years, who do not smoke and do not take any food supplements, participated in the study. Blood was withdrawn from each participant at three time points (before the exercise and 5 minutes and one hour after exercise). Copper induced peroxidation of sera made of the blood samples was monitored by spectrophotometry. For comparison, we also assayed TBARS concentration and the activity of oxidation-related enzymes. The physical exercise resulted in a slight and reversible increase of TBARS and slight changes in the activities of the studied antioxidant enzymes and the lag preceding peroxidation did not change substantially. Most altered parameters returned to baseline level one hour after exercise. Notably, the exercise-induced changes in OS did not correlate with the physical fitness of the subjects, as evaluated in this study (VO 2max = 30-60 mL/min/kg). We conclude that in healthy young fit men a short exhaustive exercise alters only slightly the OS, independent of the actual physical fitness

    Oxidative Stress Is a Concept, Not an Indication for Selective Antioxidant Treatment

    No full text
    The steady-state redox status is physiologically important and therefore homeostatically maintained. Changes in the status result in signaling (eustress) or oxidative damage (distress). Oxidative stress (OS) is a hard-to-quantitate term that can be estimated only based on different biomarkers. Clinical application of OS, particularly for selective antioxidant treatment of people under oxidative stress, requires quantitative evaluation and is limited by the lack of universal biomarkers to describe it. Furthermore, different antioxidants have different effects on the redox state. Hence, as long as we do not have the possibility to determine and quantify OS, therapeutic interventions by the “identify-and-treat” approach cannot be assessed and are, therefore, not likely to be the basis for selective preventive measures against oxidative damage
    corecore