3 research outputs found

    Dry Field Closure of Large-Bore Access With Iliac Artery Angioplasty Through the Ipsilateral Sheath: The Single-Access Dry-Closure Technique.

    No full text
    The use of large-bore sheaths has risen exponentially in the last decade partly due to the growth of structural heart interventions and various mechanical circulatory support options. Meanwhile, the interventional community has gradually shifted from an open surgical to endovascular closure. However, vascular access complications and bleeding still remain a significant risk. Various techniques involving an additional access site have been described to allow for endovascular bailout of potential complications. However, these by themselves create an additional burden to procedural morbidity. Furthermore, the weight of additional procedural time, contrast, radiation and the need for advanced peripheral endovascular skills constitute considerable downsides to the second arterial access strategy. For that reason, we propose an alternative strategy, the single-access dry-closure technique, which provides vascular access control without the additional burden and risk of a second arterial access. This involves the use of low-pressure iliac artery occlusive angioplasty, delivered through the ipsilateral sheath during the endovascular closure. We hereby describe the steps, advantages and disadvantages of this novel technique. We also include the description of multiple technical variations depending on the use of one or two preclosed Proglide devices. This novel approach seems to be a safe, effective, simple, fast and economical technique that has the potential to decrease procedural morbidity by avoiding an additional arterial access. It also lowers contrast volume and radiation exposure while improving the overall set-up and operator ergonomics

    The "Woundosome" Concept and Its Impact on Procedural Outcomes in Patients With Chronic Limb-Threatening Ischemia

    Get PDF
    This editorial assembles endovascular specialists from diverse clinical backgrounds and nationalities with a global call to address key challenges to enhance revascularization in chronic limb-threatening ischemia (CLTI) patients.- Dedicated below-the-ankle (BTA) angiography and revascularization is underutilized in ischemic foot treatment. Existing guidelines do not address comprehensive BTA vessel analysis. CLTI trials also often lack data on in-line arterial flow to the ischemic lesion and BTA vessel evaluation, hindering outcome assessment.- Dedicated multi-planar angiographic evaluation of the distal microcirculation is key: Direct arterial flow or good-quality collaterals are crucial in influencing wound healing and need to be assessed diligently to the level of the distal ischemic wound territory, termed “woundosome.”- An important primary emphasis of future trials should be on validating technologies and strategies for assessing tissue perfusion before, during, and after revascularization undertaken to heal tissue loss in CLTI patients. This will allow determination of a potentially significant delta in tissue perfusion prior to and following intervention at the “woundosome” level. Once changes in arterial perfusion have been identified as positively correlated to wound healing, these could serve as a much-needed novel primary technical outcome measure for patients with tissue loss undergoing surgical, hybrid, or endovascular revascularization
    corecore