15 research outputs found
Synchronization of cytoplasmic and transferred mitochondrial ribosomal protein gene expression in land plants is linked to Telo-box motif enrichment
<p>Abstract</p> <p>Background</p> <p>Chloroplasts and mitochondria evolved from the endosymbionts of once free-living eubacteria, and they transferred most of their genes to the host nuclear genome during evolution. The mechanisms used by plants to coordinate the expression of such transferred genes, as well as other genes in the host nuclear genome, are still poorly understood.</p> <p>Results</p> <p>In this paper, we use nuclear-encoded chloroplast (cpRPGs), as well as mitochondrial (mtRPGs) and cytoplasmic (euRPGs) ribosomal protein genes to study the coordination of gene expression between organelles and the host. Results show that the mtRPGs, but not the cpRPGs, exhibit strongly synchronized expression with euRPGs in all investigated land plants and that this phenomenon is linked to the presence of a <it>telo</it>-box DNA motif in the promoter regions of mtRPGs and euRPGs. This motif is also enriched in the promoter regions of genes involved in DNA replication. Sequence analysis further indicates that mtRPGs, in contrast to cpRPGs, acquired <it>telo</it>-box from the host nuclear genome.</p> <p>Conclusions</p> <p>Based on our results, we propose a model of plant nuclear genome evolution where coordination of activities in mitochondria and chloroplast and other cellular functions, including cell cycle, might have served as a strong selection pressure for the differential acquisition of <it>telo</it>-box between mtRPGs and cpRPGs. This research also highlights the significance of physiological needs in shaping transcriptional regulatory evolution.</p
Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene
Polyketide synthase gene<i>aolc35-12</i>controls the differential expression of ochratoxin A gene<i>aoks1</i>in<i>Aspergillus westerdijkiae</i>
Ochratoxine A (OTA), a potential human carcinogen is produced by several species of Aspergillus and Penicillium, including Aspergillus westerdijkiae. In this study a putative polyketide synthase gene aolc35-12 has been partially cloned from A. westerdijkiae. The predicted amino acid sequence of the 3.22 kb clone was found to have a high degree of similarity to other previously identified polyketide synthase genes from various OTA-producing fungi including Aspergillus ochraceus, Aspergillus niger, Aspergillus carbonarius and Penicillium nordicum. The aolc35-12 gene was disrupted and inactivated by insertion of Escherichia coli hygromycin B phosphotransferase gene, which resulted in an OTA negative mutant aoΔlc35-12. Genetic complementation confirmed aolc35-12 as OTA-polyketide synthase gene. Furthermore, study of the differential expression of aolc35-12 and a previously identified OTA-polyketide synthase gene, i.e. aoks1, in the wild-type A. westerdijkiae and aoΔlc35-12 mutant revealed that aolc35-12 could code for a certain polyketide compound complementary for the expression of aoks1 and hence for the activation of OTA biosynthesis system in A. westerdijkiae.</jats:p
