151 research outputs found

    Primitive-based 3D Abstraction Method for Spacecraft ISAR Images

    Get PDF
    Inverse Synthetic Aperture Radar (ISAR) images of spacecraft are composed of discrete scatterers that exhibit weak texture, high dynamics, and discontinuity. These characteristics result in sparse point clouds obtained using traditional algorithms for the Three-Dimensional (3D) reconstruction of spacecraft ISAR images. Furthermore, using point clouds to comprehensively describe the complete shape of targets is difficult, which consequently hampers the accurate extraction of the structural and pose parameters of the target. To address this problem, considering that space targets usually have specific modular structures, this paper proposes a method for abstracting parametric structural primitives from space target ISAR images to represent their 3D structures. First, the energy accumulation algorithm is used to obtain the sparse point cloud of the target from ISAR images. Subsequently, the point cloud is fitted using parameterized primitives. Finally, primitives are projected onto the ISAR imaging plane and optimized by maximizing their similarity with the target image to obtain the optimal 3D representation of the target primitives. Compared with the traditional point cloud 3D reconstruction, this method can provide a more complete description of the three-dimensional structure of the target. Meanwhile, primitive parameters obtained using this method represent the attitude and structure of the target and can directly support subsequent tasks such as target recognition and analysis. Simulation experiments demonstrate that this method can effectively achieve the 3D abstraction of space targets based on ISAR sequential images

    Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale

    Get PDF
    Considering the extensive functional redundancy in microbial communities and great difficulty in elucidating it based on taxonomic structure, studies on the biogeography of soil microbial activity at large spatial scale are as important as microbial community structure. Eighty-four soil samples were collected across a region from south to north China (about 1,000 km) to address the questions if microbial activity displays biogeographic patterns and what are driving forces. These samples represented different soil types, land use and climate. Redundancy analysis and nonmetric multidimensional scaling clearly revealed that soil microbial activities showed distinct differentiation at different sites over a regional spatial scale, which were strongly affected by soil pH, total P, rainfall, temperature, soil type and location. In addition, microbial community structure was greatly influenced by rainfall, location, temperature, soil pH and soil type and was correlated with microbial activity to some extent. Our results suggest that microbial activities display a clear geographic pattern that is greatly altered by geographic distance and reflected by climate, soil pH and total P over large spatial scales. There are common (distance, climate, pH and soil type) but differentiated aspects (TP, SOC and N) in the biogeography of soil microbial community structure and activity

    High throughput Single-cell Cultivation on Microfluidic Streak Plates

    Get PDF
    This paper describes the microfluidic streak plate (MSP), a facile method for high-throughput microbial cell separation and cultivation in nanoliter sessile droplets. The MSP method builds upon the conventional streak plate technique by using microfluidic devices to generate nanoliter droplets that can be streaked manually or robotically onto petri dishes prefilled with carrier oil for cultivation of single cells. In addition, chemical gradients could be encoded in the droplet array for comprehensive dose-response analysis. The MSP method was validated by using single-cell isolation of Escherichia coli and antimicrobial susceptibility testing of Pseudomonas aeruginosa PAO1. The robustness of the MSP work flow was demonstrated by cultivating a soil community that degrades polycyclic aromatic hydrocarbons. Cultivation in droplets enabled detection of the richest species diversity with better coverage of rare species. Moreover, isolation and cultivation of bacterial strains by MSP led to the discovery of several species with high degradation efficiency, including four Mycobacterium isolates and a previously unknown fluoranthene-degrading Blastococcus species

    Development and evaluation of a real-time recombinase-aid amplification assay for rapid detection of Pseudomonas aeruginosa

    Get PDF
    Objective To establish a real-time recombinase-aid amplification (RAA) method for rapid detection of Pseudomonas aeruginosa. Methods Specific primers and exo probes based on ecfX gene of P. aeruginosa were designed in this study, and the validity of the method was evaluated by sensitivity, specificity and suspected strains detection. Results Real-time RAA was performed successfully at 39℃ for 20 min. Only the P. aeruginosa strains but not other bacteria were amplified, showing the good specificity. The limit of detection was 3.0×103 fg genomic DNA per reaction, and 1.0×103 CFU P. aeruginosa pure culture per reaction. The developed real-time RAA was further evaluated on 36 suspected of P. aeruginosa, which were identified successfully to be P. aeruginosa.The detection result were the same with those of a real-time PCR assay and the VITEK 2 Compact. Conclusion The developed real-time RAA assay is a rapid, simple and reliable tool for accurate detection of P. aeruginosa of diverse origins

    Sphingosine Kinase 1 Regulates the Akt/FOXO3a/Bim Pathway and Contributes to Apoptosis Resistance in Glioma Cells

    Get PDF
    The aim of this study was to investigate the mechanism through which Sphingosine kinase-1 (SPHK1) exerts its anti-apoptosis activity in glioma cancer cells. We here report that dysregulation of SPHK1 alters the sensitivity of glioma to apoptosis both in vitro and in vivo. Further mechanistic study examined the expression of Bcl-2 family members, including Bcl-2, Mcl-1, Bax and Bim, in SPHK1-overexpressing glioma cells and revealed that only pro-apoptotic Bim was downregulated by SPHK1. Moreover, the transcriptional level of Bim was also altered by SPHK1 in glioma cells. We next confirmed the correlation between SPHK1 and Bim expression in primary glioma specimens. Importantly, increasing SPHK1 expression in glioma cells markedly elevated Akt activity and phosphorylated inactivation of FOXO3a, which led to downregulation of Bim. A pharmacological approach showed that these effects of SPHK1 were dependent on phosphatidylinositol 3-kinase (PI3K). Furthermore, effects of SPHK1 on Akt/FOXO3a/Bim pathway could be reversed by SPHK1 specific RNA interference or SPHK1 inhibitor. Collectively, our results indicate that regulation of the Akt/FOXO3a/Bim pathway may be a novel mechanism by which SPHK1 protects glioma cells from apoptosis, thereby involved in glioma tumorigenesis
    corecore