307 research outputs found

    Predictor-Feedback Stabilization of Multi-Input Nonlinear Systems

    Full text link
    We develop a predictor-feedback control design for multi-input nonlinear systems with distinct input delays, of arbitrary length, in each individual input channel. Due to the fact that different input signals reach the plant at different time instants, the key design challenge, which we resolve, is the construction of the predictors of the plant's state over distinct prediction horizons such that the corresponding input delays are compensated. Global asymptotic stability of the closed-loop system is established by utilizing arguments based on Lyapunov functionals or estimates on solutions. We specialize our methodology to linear systems for which the predictor-feedback control laws are available explicitly and for which global exponential stability is achievable. A detailed example is provided dealing with the stabilization of the nonholonomic unicycle, subject to two different input delays affecting the speed and turning rate, for the illustration of our methodology.Comment: Submitted to IEEE Transactions on Automatic Control on May 19 201

    Nonlinear predictors for systems with bounded trajectories and delayed measurements

    Get PDF
    Novel nonlinear predictors are studied for nonlinear systems with delayed measurements without assuming globally Lipschitz conditions or a known predictor map but requiring instead bounded state trajectories. The delay is constant and known. These nonlinear predictors consists of a series of dynamic filters that generate estimates of the state vector (and its maximum magnitude) at different delayed time instants which differ from one another by a small fraction of the overall delay
    • …
    corecore