415 research outputs found

    Quantum theory of intersubband polarons

    Get PDF
    We present a microscopic quantum theory of intersubband polarons, quasiparticles originated from the coupling between intersubband transitions and longitudinal optical phonons. To this aim we develop a second quantized theory taking into account both the Fr\"ohlich interaction between phonons and intersubband transitions and the Coulomb interaction between the intersubband transitions themselves. Our results show that the coupling between the phonons and the intersubband transitions is extremely intense, thanks both to the collective nature of the intersubband excitations and to the natural tight confinement of optical phonons. Not only the coupling is strong enough to spectroscopically resolve the resonant splitting between the modes (strong coupling regime), but it can become comparable to the bare frequency of the excitations (ultrastrong coupling regime). We thus predict the possibility to exploit intersubband polarons both for applied optoelectronic research, where a precise control of the phonon resonances is needed, and also to observe fundamental quantum vacuum physics, typical of the ultrastrong coupling regime

    Structure formation in the presence of dark energy perturbations

    Full text link
    We study non-linear structure formation in the presence of dark energy. The influence of dark energy on the growth of large-scale cosmological structures is exerted both through its background effect on the expansion rate, and through its perturbations as well. In order to compute the rate of formation of massive objects we employ the Spherical Collapse formalism, which we generalize to include fluids with pressure. We show that the resulting non-linear evolution equations are identical to the ones obtained in the Pseudo-Newtonian approach to cosmological perturbations, in the regime where an equation of state serves to describe both the background pressure relative to density, and the pressure perturbations relative to the density perturbations as well. We then consider a wide range of constant and time-dependent equations of state (including phantom models) parametrized in a standard way, and study their impact on the non-linear growth of structure. The main effect is the formation of dark energy structure associated with the dark matter halo: non-phantom equations of state induce the formation of a dark energy halo, damping the growth of structures; phantom models, on the other hand, generate dark energy voids, enhancing structure growth. Finally, we employ the Press-Schechter formalism to compute how dark energy affects the number of massive objects as a function of redshift.Comment: 21 pages, 8 figures. Matches published version, with caption of Fig. 6 correcte

    Short-term stenting using fully covered self-expandable metal stents for treatment of refractory biliary leaks, postsphincterotomy bleeding, and perforations.

    Get PDF
    BACKGROUND: Fully covered self-expandable metal stents (FCSEMS) have been used as a rescue therapy for several benign biliary tract conditions (BBC). Long-term stent placement commonly occurs, and prolonged FCSEMS placement is associated with the majority of the complications reported. This study evaluated the duration of stenting and the efficacy and safety of temporary FCSEMS placement for three BBCs: refractory biliary leaks, postsphincterotomy bleeding, and perforations. METHODS: This was a retrospective case series with long-term follow-up of 25 patients who underwent FCSEMS placement for BBCs. This study included 17 patients with postcholecystectomy refractory biliary leaks who had previously undergone unsuccessful sphincterotomy and plastic stent placement, 4 patients with difficult-to-control postsphincterotomy bleeding, and 4 patients with a perforation following endoscopic sphincterotomy. Stents were removed according to clinical evidence of problem resolution. The review included stenting duration, safe FCSEMS removal, clinical efficacy, complications, and long-term outcomes. During the follow-up period, ERCP and cholangioscopy procedures were performed to exclude the possibility of bile duct lesion development. RESULTS: Complete resolution of the initial condition was achieved in all patients. Patients with biliary leaks had a median stent duration time of 16 days (range 7-28 days). Patients with bleeding had stents removed after a median time of 6 days (range 3-15 days). Patients with perforations had their stents removed after a median time of 29.5 days (range 21-30 days). There were no complications related to stenting. CONCLUSIONS: Temporary placement of a FCSEMS for 30 days or less is an effective rescue therapy for refractory biliary leaks, difficult-to-control post-endoscopic sphincterotomy bleeding, and perforations. Duration of stenting should be different for each type of condition. Stents can be safely removed, and short-term stenting is associated with the absence of early and late complications

    Optical properties of atomic Mott insulators: from slow light to dynamical Casimir effects

    Full text link
    We theoretically study the optical properties of a gas of ultracold, coherently dressed three-level atoms in a Mott insulator phase of an optical lattice. The vacuum state, the band dispersion and the absorption spectrum of the polariton field can be controlled in real time by varying the amplitude and the frequency of the dressing beam. In the weak dressing regime, the system shows unique ultra-slow light propagation properties without absorption. In the presence of a fast time modulation of the dressing amplitude, we predict a significant emission of photon pairs by parametric amplification of the polaritonic zero-point fluctuations. Quantitative considerations on the experimental observability of such a dynamical Casimir effect are presented for the most promising atomic species and level schemes

    The coherent interaction between matter and radiation - A tutorial on the Jaynes-Cummings model

    Full text link
    The Jaynes-Cummings (JC) model is a milestone in the theory of coherent interaction between a two-level system and a single bosonic field mode. This tutorial aims to give a complete description of the model, analyzing the Hamiltonian of the system, its eigenvalues and eigestates, in order to characterize the dynamics of system and subsystems. The Rabi oscillations, together with the collapse and revival effects, are distinguishing features of the JC model and are important for applications in Quantum Information theory. The framework of cavity quantum electrodynamics (cQED) is chosen and two fundamental experiments on the coherent interaction between Rydberg atoms and a single cavity field mode are described.Comment: 22 pages, 7 figures. Tutorial. Submitted to a special issue of EPJ - ST devoted to the memory of Federico Casagrand

    Sensitivity and Insensitivity of Galaxy Cluster Surveys to New Physics

    Full text link
    We study the implications and limitations of galaxy cluster surveys for constraining models of particle physics and gravity beyond the Standard Model. Flux limited cluster counts probe the history of large scale structure formation in the universe, and as such provide useful constraints on cosmological parameters. As a result of uncertainties in some aspects of cluster dynamics, cluster surveys are currently more useful for analyzing physics that would affect the formation of structure than physics that would modify the appearance of clusters. As an example we consider the Lambda-CDM cosmology and dimming mechanisms, such as photon-axion mixing.Comment: 24 pages, 8 eps figures. References added, discussion of scatter in relations between cluster observables lengthene

    Quinstant Dark Energy Predictions for Structure Formation

    Full text link
    We explore the predictions of a class of dark energy models, quinstant dark energy, concerning the structure formation in the Universe, both in the linear and non-linear regimes. Quinstant dark energy is considered to be formed by quintessence and a negative cosmological constant. We conclude that these models give good predictions for structure formation in the linear regime, but fail to do so in the non-linear one, for redshifts larger than one.Comment: 9 pages, 14 figures, "Accepted for publication in Astrophysics & Space Science

    Fast A‐site cation cross‐exchange at room temperature: single‐to double‐ and triple‐cation halide perovskite nanocrystals

    Get PDF
    Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGWe report here fast A-site cation cross-exchange between APbX3 perovskite nanocrystals (NCs) made of different A-cations (Cs (cesium), FA (formamidinium), and MA (methylammonium)) at room temperature. Surprisingly, the A-cation cross-exchange proceeds as fast as the halide (X=Cl, Br, or I) exchange with the help of free A-oleate complexes present in the freshly prepared colloidal perovskite NC solutions. This enabled the preparation of double (MACs, MAFA, CsFA)- and triple (MACsFA)-cation perovskite NCs with an optical band gap that is finely tunable by their A-site composition. The optical spectroscopy together with structural analysis using XRD and atomically resolved high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and integrated differential phase contrast (iDPC) STEM indicates the homogeneous distribution of different cations in the mixed perovskite NC lattice. Unlike halide ions, the A-cations do not phase-segregate under light illumination.Agencia Estatal de Investigación https://doi.org/10.13039/501100011033 | Ref. PID2020-117371RA-I00Xunta de Galicia https://doi.org/10.13039/501100010801 | Ref. ED431F2021/05HORIZON EUROPE European Research Council https://doi.org/10.13039/100019180 | Ref. ERC-CoG-2019 815128European Commission https://doi.org/10.13039/501100000780 | Ref. 731019Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 | Ref. EP/R023980/1Royal Society https://doi.org/10.13039/50110000028
    corecore