59 research outputs found
Threshold effects and Planck scale Lorentz violation: combined constraints from high energy astrophysics
Recent work has shown that dispersion relations with Planck scale Lorentz
violation can produce observable effects at energies many orders of magnitude
below the Planck energy M. This opens a window on physics that may reveal
quantum gravity phenomena. It has already constrained the possibility of Planck
scale Lorentz violation, which is suggested by some approaches to quantum
gravity. In this work we carry out a systematic analysis of reaction
thresholds, allowing unequal deformation parameters for different particle
dispersion relations. The thresholds are found to have some unusual properties
compared with standard ones, such as asymmetric momenta for pair creation and
upper thresholds. The results are used together with high energy observational
data to determine combined constraints. We focus on the case of photons and
electrons, using vacuum Cerenkov, photon decay, and photon annihilation
processes to determine order unity constraints on the parameters controlling
O(E/M) Lorentz violation. Interesting constraints for protons (with photons or
pions) are obtained even at O((E/M)^2), using the absence of vacuum Cerenkov
and the observed GZK cutoff for ultra high energy cosmic rays. A strong
Cerenkov limit using atmospheric PeV neutrinos is possible for O(E/M)
deformations provided the rate is high enough. If detected, ultra high energy
cosmological neutrinos might yield limits at or even beyond O((E/M)^2).Comment: 35 pages, 13 Figures, RevTex4. Version published in PRD. Expanded
introduction, updated discussion of possible constraint if GZK cutoff is
confirmed. Corrected typos. Added and updated reference
High energy constraints on Lorentz symmetry violations
Lorentz violation at high energies might lead to non linear dispersion
relations for the fundamental particles. We analyze observational constraints
on these without assuming any a priori equality between the coefficients
determining the amount of Lorentz violation for different particle species. We
focus on constraints from three high energy processes involving photons and
electrons: photon decay, photo-production of electron-positron pairs, and
vacuum Cerenkov radiation. We find that cubic momentum terms in the dispersion
relations are strongly constrained.Comment: 7 pages, 1 figure, Talk presented at CPT01; the Second Meeting on CPT
and Lorentz Symmetry, Bloomington, Indiana, 15-18 Aug. 2001. Minor numerical
error corrected, gamma-decay constraint update
Analogue model for quantum gravity phenomenology
So called "analogue models" use condensed matter systems (typically
hydrodynamic) to set up an "effective metric" and to model curved-space quantum
field theory in a physical system where all the microscopic degrees of freedom
are well understood. Known analogue models typically lead to massless minimally
coupled scalar fields. We present an extended "analogue space-time" programme
by investigating a condensed-matter system - in and beyond the hydrodynamic
limit - that is in principle capable of simulating the massive Klein-Gordon
equation in curved spacetime. Since many elementary particles have mass, this
is an essential step in building realistic analogue models, and an essential
first step towards simulating quantum gravity phenomenology. Specifically, we
consider the class of two-component BECs subject to laser-induced transitions
between the components, and we show that this model is an example for Lorentz
invariance violation due to ultraviolet physics. Furthermore our model suggests
constraints on quantum gravity phenomenology in terms of the "naturalness
problem" and "universality issue".Comment: Talk given at 7th Workshop on Quantum Field Theory Under the
Influence of External Conditions (QFEXT 05), Barcelona, Catalonia, Spain, 5-9
Sep 200
Modified Dispersion Relations from the Renormalization Group of Gravity
We show that the running of gravitational couplings, together with a suitable
identification of the renormalization group scale can give rise to modified
dispersion relations for massive particles. This result seems to be compatible
with both the frameworks of effective field theory with Lorentz invariance
violation and deformed special relativity. The phenomenological consequences
depend on which of the frameworks is assumed. We discuss the nature and
strength of the available constraints for both cases and show that in the case
of Lorentz invariance violation, the theory would be strongly constrained.Comment: revtex4, 9 pages, updated to match published versio
Deformed Special Relativity as an effective theory of measurements on quantum gravitational backgrounds
In this article we elaborate on a recently proposed interpretation of DSR as
an effective measurement theory in the presence of non-negligible (albeit
small) quantum gravitational fluctuations. We provide several heuristic
arguments to explain how such a new theory can emerge and discuss the possible
observational consequences of this framework.Comment: 11 pages, no figure
Testing Lorentz invariance of dark matter
We study the possibility to constrain deviations from Lorentz invariance in
dark matter (DM) with cosmological observations. Breaking of Lorentz invariance
generically introduces new light gravitational degrees of freedom, which we
represent through a dynamical timelike vector field. If DM does not obey
Lorentz invariance, it couples to this vector field. We find that this coupling
affects the inertial mass of small DM halos which no longer satisfy the
equivalence principle. For large enough lumps of DM we identify a (chameleon)
mechanism that restores the inertial mass to its standard value. As a
consequence, the dynamics of gravitational clustering are modified. Two
prominent effects are a scale dependent enhancement in the growth of large
scale structure and a scale dependent bias between DM and baryon density
perturbations. The comparison with the measured linear matter power spectrum in
principle allows to bound the departure from Lorentz invariance of DM at the
per cent level.Comment: 42 pages, 9 figure
Modelling Planck-scale Lorentz violation via analogue models
Astrophysical tests of Planck-suppressed Lorentz violations had been
extensively studied in recent years and very stringent constraints have been
obtained within the framework of effective field theory. There are however
still some unresolved theoretical issues, in particular regarding the so called
"naturalness problem" - which arises when postulating that Planck-suppressed
Lorentz violations arise only from operators with mass dimension greater than
four in the Lagrangian. In the work presented here we shall try to address this
problem by looking at a condensed-matter analogue of the Lorentz violations
considered in quantum gravity phenomenology. Specifically, we investigate the
class of two-component BECs subject to laser-induced transitions between the
two components, and we show that this model is an example for Lorentz
invariance violation due to ultraviolet physics. We shall show that such a
model can be considered to be an explicit example high-energy Lorentz
violations where the ``naturalness problem'' does not arise.Comment: Talk given at the Fourth Meeting on Constrained Dynamics and Quantum
Gravity (QG05), Cala Gonone (Sardinia, Italy) September 12-16, 200
Lorentz Invariance and the semiclassical approximation of loop quantum gravity
It is shown that the field equations derived from an effective interaction
hamiltonian for Maxwell and gravitational fields in the semiclassical
approximation of loop quantum gravity using rotational invariant states (such
as weave states) are Lorentz invariant. To derive this result, which is in
agreement with the observational evidence, we use the geometrical properties of
the electromagnetic field.Comment: 6 page
Signature change events: A challenge for quantum gravity?
Within the framework of either Euclidian (functional-integral) quantum
gravity or canonical general relativity the signature of the manifold is a
priori unconstrained. Furthermore, recent developments in the emergent
spacetime programme have led to a physically feasible implementation of
signature change events. This suggests that it is time to revisit the sometimes
controversial topic of signature change in general relativity. Specifically, we
shall focus on the behaviour of a quantum field subjected to a manifold
containing regions of different signature. We emphasise that, regardless of the
underlying classical theory, there are severe problems associated with any
quantum field theory residing on a signature-changing background. (Such as the
production of what is naively an infinite number of particles, with an infinite
energy density.) From the viewpoint of quantum gravity phenomenology, we
discuss possible consequences of an effective Lorentz symmetry breaking scale.
To more fully understand the physics of quantum fields exposed to finite
regions of Euclidean-signature (Riemannian) geometry, we show its similarities
with the quantum barrier penetration problem, and the super-Hubble horizon
modes encountered in cosmology. Finally we raise the question as to whether
signature change transitions could be fully understood and dynamically
generated within (modified) classical general relativity, or whether they
require the knowledge of a full theory of quantum gravity.Comment: 33 pages. 4 figures; V2: 3 references added, no physics changes; V3:
now 24 pages - significantly shortened - argument simplified and more focused
- no physics changes - this version accepted for publication in Classical and
Quantum Gravit
- …