6 research outputs found

    A informática, os sistemas de informação e a economia

    Get PDF
    Lusíada. Economia & Empresa. - ISSN 1645-6750. - S. 2, n. 1 (2001). - p. 193-215

    Diversity of lactic acid bacteria of the bioethanol process

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB) present in the bioethanol industrial processes in different distilleries of Brazil.</p> <p>Results</p> <p>A total of 489 LAB isolates were obtained from four distilleries in 2007 and 2008. The abundance of LAB in the fermentation tanks varied between 6.0 × 10<sup>5 </sup>and 8.9 × 10<sup>8 </sup>CFUs/mL. Crude sugar cane juice contained 7.4 × 10<sup>7 </sup>to 6.0 × 10<sup>8 </sup>LAB CFUs. Most of the LAB isolates belonged to the genus <it>Lactobacillus </it>according to rRNA operon enzyme restriction profiles. A variety of <it>Lactobacillus </it>species occurred throughout the bioethanol process, but the most frequently found species towards the end of the harvest season were <it>L. fermentum </it>and <it>L. vini</it>. The different rep-PCR patterns indicate the co-occurrence of distinct populations of the species <it>L. fermentum </it>and <it>L. vini</it>, suggesting a great intraspecific diversity. Representative isolates of both species had the ability to grow in medium containing up to 10% ethanol, suggesting selection of ethanol tolerant bacteria throughout the process.</p> <p>Conclusions</p> <p>This study served as a first survey of the LAB diversity in the bioethanol process in Brazil. The abundance and diversity of LAB suggest that they have a significant impact in the bioethanol process.</p

    Mad2 phosphorylation regulates its association with Mad1 and the APC/C

    No full text
    Improper attachment of the mitotic spindle to the kinetochores of paired sister chromatids in mitosis is monitored by a checkpoint that leads to an arrest in early metaphase. This arrest requires the inhibitory association of Mad2 with the anaphase promoting complex/cyclosome (APC/C). It is not known how the association of Mad2 with the kinetochore and the APC/C is regulated in mitosis. Here, we demonstrate that human Mad2 is modified through phosphorylation on multiple serine residues in vivo in a cell cycle dependent manner and that only unphosphorylated Mad2 interacts with Mad1 or the APC/C in vivo. A Mad2 mutant containing serine to aspartic acid mutations mimicking the C-terminal phosphorylation events fails to interact with Mad1 or the APC/C and acts as a dominant-negative antagonist of wild-type Mad2. These data suggest that the phosphorylation state of Mad2 regulates its checkpoint activity by modulating its association with Mad1 and the APC/C

    Cyclin-Dependent Kinase-Associated Proteins Cks1 and Cks2 Are Essential during Early Embryogenesis and for Cell Cycle Progression in Somatic Cells ▿

    No full text
    Cks proteins associate with cyclin-dependent kinases and have therefore been assumed to play a direct role in cell cycle regulation. Mammals have two paralogs, Cks1 and Cks2, and individually deleting the gene encoding either in the mouse has previously been shown not to impact viability. In this study we show that simultaneously disrupting CKS1 and CKS2 leads to embryonic lethality, with embryos dying at or before the morula stage after only two to four cell division cycles. RNA interference (RNAi)-mediated silencing of CKS genes in mouse embryonic fibroblasts (MEFs) or HeLa cells causes cessation of proliferation. In MEFs CKS silencing leads to cell cycle arrest in G2, followed by rereplication and polyploidy. This phenotype can be attributed to impaired transcription of the CCNB1, CCNA2, and CDK1 genes, encoding cyclin B1, cyclin A, and Cdk1, respectively. Restoration of cyclin B1 expression rescues the cell cycle arrest phenotype conferred by RNAi-mediated Cks protein depletion. Consistent with a direct role in transcription, Cks2 is recruited to chromatin in general and to the promoter regions and open reading frames of genes requiring Cks function with a cell cycle periodicity that correlates with their transcription

    Reduced spermatogonial proliferation and decreased fertility in mice overexpressing cyclin E in spermatogonia

    No full text
    Cyclin E is a key component of the cell cycle regulatory machinery, contributing to the activation of Cdk2 and the control of cell cycle progression at several stages. Cyclin E expression is tightly regulated, by periodic transcription and ubiquitin-mediated degradation. Overexpression of cyclin E has been associated with tumor development and poor prognosis in several tumor types, including germ cell tumors and both cyclin E and its partner Cdk2 are required for normal spermatogenesis. Here we have generated and characterized transgenic mice overexpressing a cyclin E mutant protein, resistant to ubiquitin-mediated proteolysis, in testicular germ cells, under the control of the human EF-1alpha promoter. The transgenic mice develop normally and live a normal life span, with no signs of testicular tumor development. The transgenic mice display however reduced fertility and testicular atrophy, due to reduced spermatogonial proliferation as a consequence of deregulated cyclin E levels. Overall our results show that deregulation of cyclin E expression contribute to infertility, due to inability of the spermatogonial cells to start the mitotic cycles prior to entering meiosis
    corecore