31 research outputs found

    Considerations for preparing a randomized population health intervention trial: lessons from a South African–Canadian partnership to improve the health of health workers

    Get PDF
    Background: Community-based cluster-randomized controlled trials (RCTs) are increasingly being conducted to address pressing global health concerns. Preparations for clinical trials are well-described, as are the steps for multi-component health service trials. However, guidance is lacking for addressing the ethical and logistic challenges in (cluster) RCTs of population health interventions in low- and middle-income countries. Objective: We aimed to identify the factors that population health researchers must explicitly consider when planning RCTs within North–South partnerships. Design: We reviewed our experiences and identified key ethical and logistic issues encountered during the pre-trial phase of a recently implemented RCT. This trial aimed to improve tuberculosis (TB) and Human Immunodeficiency Virus (HIV) prevention and care for health workers by enhancing workplace assessment capability, addressing concerns about confidentiality and stigma, and providing onsite counseling, testing, and treatment. An iterative framework was used to synthesize this analysis with lessons taken from other studies. Results: The checklist of critical factors was grouped into eight categories: 1) Building trust and shared ownership; 2) Conducting feasibility studies throughout the process; 3) Building capacity; 4) Creating an appropriate information system; 5) Conducting pilot studies; 6) Securing stakeholder support, with a view to scale-up; 7) Continuously refining methodological rigor; and 8) Explicitly addressing all ethical issues both at the start and continuously as they arise. Conclusion: Researchers should allow for the significant investment of time and resources required for successful implementation of population health RCTs within North–South collaborations, recognize the iterative nature of the process, and be prepared to revise protocols as challenges emerge

    Influence of late Pleistocene sea-level variations on midocean ridge spacing in faulting simulations and a global analysis of bathymetry

    No full text
    It is established that changes in sea level influence melt production at midocean ridges, but whether changes in melt production influence the pattern of bathymetry flanking midocean ridges has been debated on both theoretical and empirical grounds. To explore the dynamics that may give rise to a sea-level influence on bathymetry, we simulate abyssal hills using a faulting model with periodic variations in melt supply. For 100-ky melt-supply cycles, model results show that faults initiate during periods of amagmatic spreading at half-rates >2.3 cm/y and for 41-ky melt-supply cycles at half-rates >3.8 cm/y. Analysis of bathymetry across 17 midocean ridge regions shows characteristic wavelengths that closely align with the predictions from the faulting model. At intermediate-spreading ridges (half-rates >2.3 cm/y and ≤3.8 cm/y) abyssal hill spacing increases with spreading rate at 0.99 km/(cm/y) or 99 ky (n = 12; 95% CI, 87 to 110 ky), and at fast-spreading ridges (half-rates >3.8 cm/y) spacing increases at 38 ky (n = 5; 95% CI, 29 to 47 ky). Including previously published analyses of abyssal-hill spacing gives a more precise alignment with the primary periods of Pleistocene sea-level variability. Furthermore, analysis of bathymetry from fast-spreading ridges shows a highly statistically significant spectral peak (P < 0.01) at the 1/(41-ky) period of Earth’s variations in axial tilt. Faulting models and observations both support a linkage between glacially induced sea-level change and the fabric of the sea floor over the late Pleistocene

    Utilizing Active Software to Capture Tacit Knowledge for Strategic Use

    No full text
    corecore