28 research outputs found

    Epithelial Neoplasia Coincides with Exacerbated Injury and Fibrotic Response in the Lungs of \u3cem\u3eGprc5a\u3c/em\u3e-Knockout Mice Following Silica Exposure

    Get PDF
    Exposure to crystalline silica is suggested to increase the risk for a variety of lung diseases, including fibrosis and lung cancer. However, epidemiological evidences for the exposure-risk relationship are ambiguous and conflicting, and experimental study from a reliable animal model to explore the relationship is lacking. We reasoned that a mouse model that is sensitive to both lung injury and tumorigenesis would be appropriate to evaluate the exposure-risk relationship. Previously, we showed that, Gprc5a-/- mice are susceptible to both lung tumorigenesis and endotoxin-induced acute lung injury. In this study, we investigated the biological consequences in Gprc5a-/- mouse model following silica exposure. Intra-tracheal administration of fine silica particles in Gprc5a-/- mice resulted in more severe lung injury and pulmonary inflammation than in wild-type mice. Moreover, an enhanced fibrogenic response, including EMT-like characteristics, was induced in the lungs of Gprc5a-/- mice compared to those from wild-type ones. Importantly, increased hyperplasia or neoplasia coincided with silica-induced tissue injury and fibrogenic response in lungs from Gprc5a-/- mice. Consistently, expression of MMP9, TGFβ1 and EGFR was significantly increased in lungs from silica-treated Gprc5a-/- mice compared to those untreated or wild-type ones. These results suggest that, the process of tissue repair coincides with tissue damages; whereas persistent tissue damages leads to abnormal repair or neoplasia. Thus, silica-induced pulmonary inflammation and injury contribute to increased neoplasia development in lungs from Gprc5a-/- mouse model

    G9a Is Essential for EMT-Mediated Metastasis and Maintenance of Cancer Stem Cell-Like Characters in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a particularly aggressive cancer with poor prognosis, largely due to lymph node metastasis and local recurrence. Emerging evidence suggests that epithelial-to-mesenchymal transition (EMT) is important for cancer metastasis, and correlated with increased cancer stem cells (CSCs) characteristics. However, the mechanisms underlying metastasis to lymph nodes in HNSCC is poorly defined. In this study, we show that E-cadherin repression correlates with cancer metastasis and poor prognosis in HNSCC. We found that G9a, a histone methyltransferase, interacts with Snail and mediates Snail-induced transcriptional repression of E-cadherin and EMT, through methylation of histone H3 lysine-9 (H3K9). Moreover, G9a is required for both lymph node-related metastasis and TGF-β-induced EMT in HNSCC cells since knockdown of G9a reversed EMT, inhibited cell migration and tumorsphere formation, and suppressed the expression of CSC markers. Our study demonstrates that the G9a protein is essential for the induction of EMT and CSC-like properties in HNSCC. Thus, targeting the G9a-Snail axis may represent a novel strategy for treatment of metastatic HNSCC

    Autocrine Epiregulin Activates EGFR Pathway for Lung Metastasis Via EMT in Salivary Adenoid Cystic Carcinoma

    Get PDF
    Salivary adenoid cystic carcinoma (SACC) is characterized by invasive local growth and a high incidence of lung metastasis. Patients with lung metastasis have a poor prognosis. Treatment of metastatic SACC has been unsuccessful, largely due to a lack of specific targets for the metastatic cells. In this study, we showed that epidermal growth factor receptors (EGFR) were constitutively activated in metastatic lung subtypes of SACC cells, and that this activation was induced by autocrine expression of epiregulin (EREG), a ligand of EGFR. Autocrine EREG expression was increased in metastatic SACC-LM cells compared to that in non-metastatic parental SACC cells. Importantly, EREG-neutralizing antibody, but not normal IgG, blocked the autocrine EREG-induced EGFR phosphorylation and the migration of SACC cells, suggesting that EREG-induced EGFR activation is essential for induction of cell migration and invasion by SACC cells. Moreover, EREG-activated EGFR stabilized Snail and Slug, which promoted EMT and metastatic features in SACC cells. Of note, targeting EGFR with inhibitors significantly suppressed both the motility of SACC cells in vitro and lung metastasis in vivo. Finally, elevated EREG expression showed a strong correlation with poor prognosis in head and neck cancer. Thus, targeting the EREG-EGFR-Snail/Slug axis represents a novel strategy for the treatment of metastatic SACC even no genetic EGFR mutation

    Production of the neutral toppion at the e gamma colliders

    Full text link
    In the framework of topcolor-assisted technicolor(TC2) model, we study a neutral toppion production process eγeΠt0e^{-}\gamma\to e^{-}\Pi^{0}_{t} in this paper. Our results show that the production cross section of eγeΠt0e^{-}\gamma\to e^{-}\Pi^{0}_{t} can reach the level of several tens fb, and over 10310^{3} neutral toppion events can be produced in the planned e+ee^+e^- linear colliders each year. Therefore, such a toppion production process provides us a unique chance to detect toppion events and test the TC2 model. On the other hand, the cross section of eγeΠt0e^{-}\gamma\to e^{-}\Pi^{0}_{t} is about one order of magnitude larger than those of some similar processes in SM and MSSM(i.e., eγeHe^{-}\gamma\to e^{-}H in SM and eγeH0(A0,h0)e^{-}\gamma\to e^{-}H^{0}(A^0,h^0) in MSSM). So, we can easily distinguish the neutral toppion from other neutral Higgs bosons in SM and MSSM.Comment: 12 pages, 4 figures, The paper has been accepted by Phys.Rev.

    EGFR phosphorylates and inhibits lung tumor suppressor GPRC5A in lung cancer

    Get PDF
    BACKGROUND: GPRC5A is a retinoic acid inducible gene that is preferentially expressed in lung tissue. Gprc5a- knockout mice develop spontaneous lung cancer, indicating Gprc5a is a lung tumor suppressor gene. GPRC5A expression is frequently suppressed in majority of non-small cell lung cancers (NSCLCs), however, elevated GPRC5A is still observed in a small portion of NSCLC cell lines and tumors, suggesting that the tumor suppressive function of GPRC5A is inhibited in these tumors by an unknown mechanism. METHODS: In this study, we examined EGF receptor (EGFR)-mediated interaction and tyrosine phosphorylation of GPRC5A by immunoprecipitation (IP)-Westernblot. Tyrosine phosphorylation of GPRC5A by EGFR was systematically identified by site-directed mutagenesis. Cell proliferation, migration, and anchorage-independent growth of NSCLC cell lines stably transfected with wild-type GPRC5A and mutants defective in tyrosine phosphorylation were assayed. Immunohistochemical (IHC) staining analysis with specific antibodies was performed to measure the total and phosphorylated GPRC5A in both normal lung and lung tumor tissues. RESULT: We found that EGFR interacted with GPRC5A and phosphorylated it in two conserved double-tyrosine motifs, Y317/Y320 and Y347/ Y350, at the C-terminal tail of GPRC5A. EGF induced phosphorylation of GPRC5A, which disrupted GPRC5A-mediated suppression on anchorage-independent growth of NSCLC cells. On contrary, GPRC5A-4 F, in which the four tyrosine residues have been replaced with phenylalanine, was resistant to EGF-induced phosphorylation and maintained tumor suppressive activities. Importantly, IHC analysis with anti-Y317/Y320-P sites showed that GPRC5A was non-phosphorylated in normal lung tissue whereas it was highly tyrosine-phosphorylated in NSCLC tissues. CONCLUSION: GPRC5A can be inactivated by receptor tyrosine kinase via tyrosine phosphorylation. Thus, targeting EGFR can restore the tumor suppressive functions of GPRC5A in lung cancer

    Associated production of neutral toppion with a pair of heavy quarks in γγ\gamma\gamma collisions

    Full text link
    We have studied a neutral toppion production process γγffˉΠt0(f=t,b)\gamma\gamma\to f\bar{f}\Pi_{t}^{0}(f=t,b) in the topcolor-assisted technicolor(TC2) model. We find that the cross section of γγttˉΠt0\gamma\gamma\to t\bar{t}\Pi_{t}^{0} is much larger than that of γγbbˉΠt0\gamma\gamma\to b\bar{b}\Pi_{t}^{0}. On the other hand, the cross section can be obviously enhanced with the increasing of c.m.energy. With s=1600\sqrt{s}=1600 GeV, the cross section of ttˉΠt0t\bar{t}\Pi_t^0 production can reach the level of a few fb. The results show that γγttˉΠt0ttˉ(tcˉ)\gamma\gamma\to t\bar{t}\Pi^0_t \to t\bar{t}(t\bar{c}) is the most ideal channel to detect neutral toppion due to the clean SM background. With such sufficient signals and clean background, neutral toppion could be detected at TESLA with high c.m.energy.Comment: 11 pages, 5 figure

    Rutin Promotes Pancreatic Cancer Cell Apoptosis by Upregulating miRNA-877-3p Expression

    No full text
    (1) Background: pancreatic cancer is one of the most serious cancers due to its rapid and inevitable fatality, which has been proved very difficult to treat, compared with many other common cancers. Thus, developing an effective therapeutic strategy, especially searching for potential drugs, is the focus of current research. The exact mechanism of rutin in pancreatic cancer remains unknown. (2) Method: three pancreatic cancer cell lines were used to study the anti-pancreatic cancer effect of rutin. The potent anti-proliferative, anti-migration and pro-apoptotic properties of rutin were uncovered by cell viability, a wound-healing migration assay, and a cell apoptosis assay. High-throughput sequencing technology was used to detect the change of miRNAs expression. Immunoblotting analysis was used to detect the expression of apoptotic proteins. (3) Results: CCK-8 and EDU assays revealed that rutin significantly inhibited pancreatic cancer cells’ proliferation (p < 0.05). A wound-healing assay showed that rutin significantly suppressed pancreatic cancer cells’ migration (p < 0.05). A flow cytometric assay showed that rutin could promote pancreatic cancer cells’ apoptosis. Intriguingly, rutin significantly upregulated miR-877-3p expression to repress the transcription of Bcl-2 and to induce pancreatic cancer cell apoptosis. Accordingly, rutin and miR-877-3p mimics could promote apoptotic protein expression. (4) Conclusions: our findings indicate that rutin plays an important role in anti-pancreatic cancer effects through a rutin-miR-877-3p-Bcl-2 axis and suggests a potential therapeutic strategy for pancreatic cancer

    ALDH2 Repression Promotes Lung Tumor Progression via Accumulated Acetaldehyde and DNA Damage

    No full text
    The major role of aldehyde dehydrogenase 2 family (ALDH2) is to detoxify acetaldehyde (ACE) to non-toxic acetic acid. Many evidences suggest that ALDH2 dysfunction contributes to a variety of human diseases including cancer. However, the biological function and molecular mechanism of ALDH2 in tumor progression remain elusive. In this study, we found that ALDH2 repression was associated with poor prognosis in lung adenocarcinoma. Overexpression of ALDH2 inhibited malignant features of lung adenocarcinoma cells, such as proliferation, stemness and migration, whereas ALDH2 knockdown increased these features. Mechanistically, ALDH2 repression led to accumulation of ACE; whereas ACE enhanced the migration features of lung adenocarcinoma cells, which was associated with increased DNA damage. Importantly, accumulated ACE and increased DNA damage were identified in Aldh2-knockout (KO) mouse lung tissues in vivo. Consistent with this concept, treatment of lung adenocarcinoma cells with ALDH2 agonist Alda-1 suppressed the proliferation, stemness and migration features of lung adenocarcinoma cells. Thus, activating ALDH2, such as via its agonist, may provide a novel strategy for treatment of lung cancer
    corecore