406 research outputs found

    Risks of Large Portfolios

    Get PDF
    Estimating and assessing the risk of a large portfolio is an important topic in financial econometrics and risk management. The risk is often estimated by a substitution of a good estimator of the volatility matrix. However, the accuracy of such a risk estimator for large portfolios is largely unknown, and a simple inequality in the previous literature gives an infeasible upper bound for the estimation error. In addition, numerical studies illustrate that this upper bound is very crude. In this paper, we propose factor-based risk estimators under a large amount of assets, and introduce a high-confidence level upper bound (H-CLUB) to assess the accuracy of the risk estimation. The H-CLUB is constructed based on three different estimates of the volatility matrix: sample covariance, approximate factor model with known factors, and unknown factors (POET, Fan, Liao and Mincheva, 2013). For the first time in the literature, we derive the limiting distribution of the estimated risks in high dimensionality. Our numerical results demonstrate that the proposed upper bounds significantly outperform the traditional crude bounds, and provide insightful assessment of the estimation of the portfolio risks. In addition, our simulated results quantify the relative error in the risk estimation, which is usually negligible using 3-month daily data. Finally, the proposed methods are applied to an empirical study

    A semi-free weighting matrices approach for neutral-type delayed neural networks

    Get PDF
    AbstractIn this paper, a new approach is proposed for stability issues of neutral-type neural networks (DNNs) with constant delay. First, the semi-free weighting matrices are proposed and used instead of the known free weighting matrices to express the relationship between the terms in the Leibniz–Newton formula to simplify the system synthesis and to obtain less computation demand. Second, global exponential stability conditions which are less conservative and restrictive than the known results are derived. At the same time, based on the above approach, fewer variable matrices are introduced in the construction of the Lyapunov functional and augmented Lyapunov functional. Two examples are given to show their effectiveness and advantages over others

    Complex-valued wavelet network

    Get PDF
    AbstractIn this paper, a complex-valued wavelet network (CWN) is proposed. The network has complex inputs, outputs, connection weights, dilation and translation parameters, but the nonlinearity of the hidden nodes remains a real-valued function (real-valued wavelet function). This kind of network is able to approximate an arbitrary nonlinear function in complex multi-dimensional space, and it provides a powerful tool for nonlinear signal processing involving complex signals. A complex algorithm is derived for the training of the proposed CWN. A numerical example on nonlinear communication channel identification is presented for illustration

    Passivity and Passification of Fuzzy Systems with Time Delays

    Get PDF
    AbstractTakagi-Sugeno (T-S) fuzzy model provides an effective representation of complex nonlinear systems in terms of fuzzy sets and fuzzy reasoning applied to a set of linear input/output submodels. Recently, a number of authors studied the T-S fuzzy systems with time delays. In this paper, the passivity and feedback passification of T-S fuzzy systems with time delays are considered. Both delay-independent and delay-dependent results are presented, and the theoretical results are given in terms of linear matrix inequalities (LMIs). Numerical examples are given which illustrate the effectiveness of the theoretical results

    Cluster Consensus on Discrete-Time Multi-Agent Networks

    Get PDF
    Nowadays, multi-agent networks are ubiquitous in the real world. Over the last decade, consensus has received an increasing attention from various disciplines. This paper investigates cluster consensus for discrete-time multi-agent networks. By utilizing a special coupling matrix and the Kronecker product, a criterion based on linear matrix inequality (LMI) is obtained. It is shown that the addressed discrete-time multi-agent networks achieve cluster consensus if a certain LMI is feasible. Finally, an example is given to demonstrate the effectiveness of the proposed criterion

    Hopf Bifurcation and Chaos in a Single Inertial Neuron Model with Time Delay

    Full text link
    A delayed differential equation modelling a single neuron with inertial term is considered in this paper. Hopf bifurcation is studied by using the normal form theory of retarded functional differential equations. When adopting a nonmonotonic activation function, chaotic behavior is observed. Phase plots, waveform plots, and power spectra are presented to confirm the chaoticity.Comment: 12 pages, 7 figure

    Hopf Bifurcation and Chaos in Tabu Learning Neuron Models

    Full text link
    In this paper, we consider the nonlinear dynamical behaviors of some tabu leaning neuron models. We first consider a tabu learning single neuron model. By choosing the memory decay rate as a bifurcation parameter, we prove that Hopf bifurcation occurs in the neuron. The stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation are determined by applying the normal form theory. We give a numerical example to verify the theoretical analysis. Then, we demonstrate the chaotic behavior in such a neuron with sinusoidal external input, via computer simulations. Finally, we study the chaotic behaviors in tabu learning two-neuron models, with linear and quadratic proximity functions respectively.Comment: 14 pages, 13 figures, Accepted by International Journal of Bifurcation and Chao
    • …
    corecore