160 research outputs found

    Federated Learning for Short Text Clustering

    Full text link
    Short text clustering has been popularly studied for its significance in mining valuable insights from many short texts. In this paper, we focus on the federated short text clustering (FSTC) problem, i.e., clustering short texts that are distributed in different clients, which is a realistic problem under privacy requirements. Compared with the centralized short text clustering problem that short texts are stored on a central server, the FSTC problem has not been explored yet. To fill this gap, we propose a Federated Robust Short Text Clustering (FSTC) framework. FSTC includes two main modules, i.e., robust short text clustering module and federated cluster center aggregation module. The robust short text clustering module aims to train an effective short text clustering model with local data in each client. We innovatively combine optimal transport to generate pseudo-labels with Gaussian-uniform mixture model to ensure the reliability of the pseudo-supervised data. The federated cluster center aggregation module aims to exchange knowledge across clients without sharing local raw data in an efficient way. The server aggregates the local cluster centers from different clients and then sends the global centers back to all clients in each communication round. Our empirical studies on three short text clustering datasets demonstrate that FSTC significantly outperforms the federated short text clustering baselines

    Effects of serum and compressive loading on the cartilage matrix synthesis and spatiotemporal deposition around chondrocytes in 3D culture

    Get PDF
    The aim of this study was to investigate the effects of serum and compressive dynamic loading on the cartilaginous matrix spatiotemporal distribution around chondrocytes in vitro. Murine chondrocytes suspended in agarose were cultured in serum-free media or in varying concentrations of serum with or without compressive dynamic loading. Gene expression was assayed by quantitative polymerase chain reaction. Immunohistochemistry was performed for type II collagen and type VI collagen, aggrecan, or cartilage oligomeric matrix protein (COMP) to study the effect of serum and dynamic loading on the spatiotemporal distribution of cartilage matrix components. Chondrocytes in serum-free culture exhibited negligible differences in type II collagen, aggrecan, and COMP mRNA expression levels over 15 days of cultivation. However, higher serum concentrations decreased matrix gene expression. Expression of the matrix metalloproteinases (MMP)-3 and MMP-13 mRNA increased over time in serum-free or reduced serum levels, but was significantly suppressed in 10% fetal bovine serum (FBS). Compressive loading significantly stimulated MMP-3 expression on days 7 and 15. Immunohistochemical analysis demonstrated that maximum pericellular matrix deposition was achieved in 10% FBS culture in the absence of compressive loading. The pericellular distribution of type II and VI collagens, aggrecan, and COMP proteins tended to be more co-localized in the pericellular region from day 9 to day 21; compressive loading helped promote this co-localization of matrix proteins. The results of this study suggest that the quantity, quality, and spatial distribution of cartilaginous matrix can be altered by serum concentrations and compressive loading

    Mendelian randomization to evaluate the causal relationship between liver enzymes and the risk of six specific bone and joint-related diseases

    Get PDF
    BackgroundStudies of liver dysfunction in relation to bone and joint-related diseases are scarce, and its causality remains unclear. Our objective was to investigate whether serum liver enzymes are causally associated with bone and joint-related diseases using Mendelian randomization (MR) designs.MethodsGenetic data on serum liver enzymes (alkaline phosphatase (ALP); alanine transaminase (ALT); gamma-glutamyl transferase (GGT)) and six common bone and joint-related diseases (rheumatoid arthritis (RA), osteoporosis, osteoarthritis (OA), ankylosing spondylitis, psoriatic arthritis, and gout) were derived from independent genome-wide association studies of European ancestry. The inverse variance-weighted (IVW) method was applied for the main causal estimate. Complementary sensitivity analyses and reverse causal analyses were utilized to confirm the robustness of the results.ResultsUsing the IVW method, the positive causality between ALP and the risk of osteoporosis diagnosed by bone mineral density (BMD) at different sites was indicated (femoral neck, lumbar spine, and total body BMD, odds ratio (OR) [95% CI], 0.40 [0.23–0.69], 0.35 [0.19–0.67], and 0.33 [0.22–0.51], respectively). ALP was also linked to a higher risk of RA (OR [95% CI], 6.26 [1.69–23.51]). Evidence of potential harmful effects of higher levels of ALT on the risk of hip and knee OA was acquired (OR [95% CI], 2.48 [1.39–4.41] and 3.07 [1.49–6.30], respectively). No causal relationship was observed between GGT and these bone and joint-related diseases. The study also found that BMD were all negatively linked to ALP levels (OR [95% CI] for TBMD, FN-BMD, and LS-BMD: 0.993 [0.991–0.995], 0.993 [0.988–0.998], and 0.993 [0.989, 0.998], respectively) in the reverse causal analysis. The results were replicated via sensitivity analysis in the validation process.ConclusionsOur study revealed a significant association between liver function and bone and joint-related diseases

    Resistin stimulates expression of chemokine genes in chondrocytes via combinatorial regulation of C/EBPβ and NF-κB

    Get PDF
    To further investigate the regulation role of two chemokine genes CCL3 and CCL4 in chondrocytes in response to resistin, human primary chondrocytes and T/C-28a2 cells were cultured. The function of resistin on the chemokine genes, and the expression of C/EBPβ, NF-κB isoforms were tested using qPCR. The methods used to investigate timed co-regulation of C/EBPβ and NF-κB were NF-κB inhibitor (IKK-NBD) and C/EBPβ inhibitor (SB303580) treatments, and subcellular localization, with or without resistin stimulation. Results showed that resistin could increase the up-regulation of chemokine genes independently. Resistin increased the expression of C/EBPβ and NF-κB isoforms. C/EBPβ regulated basal activity and steadily increased over time up to 24h with resistin. NF-κB was up-regulated upon induction with resistin, peaking at 4 h. C/EBPβ and NF-κB co-enhanced the chemokines expression; inhibition of their activity was additive. The timing of activation in chondrocytes was confirmed by subcellular localization of C/EBPβ and c-rel. Chondrocytes react to resistin in a non-restricted cell-specific manner, utilizing C/EBPβ and NF-κB in a combinatorial regulation of chemokine gene expression. The activity of C/EBPβ is augmented by a transient increase in activity of NF-κB, and both transcription factors act independently on the chemokine genes, CCL3 and CCL4. Thus, resistin stimulates CCL3 and CCL4 through combinatorial regulation of C/EBPβ and NF-κB in chondrocytes

    CDK6 and miR-320c Co-Regulate Chondrocyte Catabolism Through NF-κB Signaling Pathways

    Get PDF
    Background/Aims: Cyclin-dependent kinase 6 (CDK6) regulates inflammatory response and cell differentiation. This study sought to determine whether CDK6 and miR-320c co-regulate chondrogenesis and inflammation. Methods: Utilizing quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC), CDK6 and miR-320c expression were assessed in a micromass culture of human bone mesenchymal stem cells that underwent chondrogenesis in vitro as well as in chondrocytes from E16.5 mouse forelimbs. Normal chondrocytes were transfected with miR-320c mimic, miR-320c inhibitor, or CDK6-siRNA. Luciferase reporter assay results confirmed that miR-320c directly targets CDK6 by interacting with the 3′-untranslated region (3′-UTR) of its mRNA. qRT-PCR, Western blotting, and Cell Counting Kit-8 were subsequently used to evaluate the effects of miR-320c overexpression and CDK6 inhibition on inflammatory factor expression, as well as to investigate the effects of NF-kB and MAPK signaling pathway activation on IL-1β-induced chondrocyte inflammation. Results: Our results show that miR-320c expression increased during the middle stage and decreased during the late stage of hBMSC chondrogenic differentiation. In contrast, CDK6 expression decreased during the middle stage and increased during the late stage of hBMSC chondrogenic differentiation. Moreover, CDK6 expression increased in severe OA cartilage and in hypertrophic chondrocytes of mouse forelimbs at E16.5. Results of the luciferase reporter assay showed that miR-320c modulated CDK6 expression by binding to the 3′-UTR of its mRNA. miR-320c overexpression and CDK6 inhibition repressed IL-1β-induced expression of inflammatory factors and regulated the NF-kB signaling pathway. Conclusion: CDK6 and miR-320c co-regulate hBMSC chondrogenesis and IL-1β-induced chondrocyte inflammation through the NF-kB signaling pathway, suggesting that miR-320c and CDK6 inhibitors can be used to repress catabolism in human chondrocytes

    Epidemiologic, Clinical, and Laboratory Findings of the COVID-19 in the current pandemic.

    Get PDF
    BACKGROUND: The COVID-19 caused the pandemic affected the world deeply, with more than 3,000,000 people infected and nearly 200,000 deaths. This article aimed to summarize the epidemiologic traits, clinical spectrum, CT results and laboratory findings of COVID-19 pandemic. METHODS: We scoped for relevant literatures published during 1st Dec 2019 to 23rd Apr 2020 based on four databases by using English and Chinese. The evidence was synthesized narratively. RESULTS: The COVID-19 pandemic was found to have a higher transmission rate compared to SARS and MERS, and involved 4 stages of evolution. The basic reproduction number (R0) is 3.32 (95% CI:3.24-3.39) and the incubation period was 5.24 days (95% CI:3.97-6.50, 5 studies) on average, and the average time for symptoms onset varied by countries. Common clinical spectrums identified included fever (38.1-39.0°C), cough and fatigue, with Acute Respiratory Distress Syndrome (ARDS) being the most common complication reported. Body temperatures above 39.0 °C, dyspnea, and anorexia were more common symptoms in severe patients. Aged over 60 years old, having co-morbidities, and developing complications were the commonest high-risk factors associated with severe conditions. Leucopenia and lymphopenia were the most common signs of infection while liver and kidney damage were rare but may cause bad outcomes for patients. The bilateral, multifocal Ground-Glass Opacification (GGO) on peripheral, and the consolidative pulmonary opacity were the most frequent CT results and the tendency of mortality rates differed by region. CONCLUSIONS: We provided a bird's-eye view of the COVID-19 during the current pandemic, which will help better understanding the key traits of the disease. The findings could be used for disease's future research, control and prevention

    Epidemiologic, clinical, and laboratory findings of the COVID-19 in the current pandemic: systematic review and meta-analysis.

    Get PDF
    BACKGROUND: The COVID-19 pandemic has affected the world deeply, with more than 14,000,000 people infected and nearly 600,000 deaths. This review aimed to summarize the epidemiologic traits, clinical spectrum, CT results and laboratory findings of the COVID-19 pandemic. METHODS: We scoped for relevant literatures published during 1st December 2019 to 16th July 2020 based on three databases using English and Chinese languages. We reviewed and analyzed the relevant outcomes. RESULTS: The COVID-19 pandemic was found to have a higher transmission rate compared to SARS and MERS and involved 4 stages of evolution. The basic reproduction number (R0) is 3.32 (95% CI:3.24-3.39), the incubation period was 5.24 days (95% CI:3.97-6.50, 5 studies) on average, and the average time for symptoms onset varied by countries. Common clinical spectrums identified included fever (38.1-39.0 °C), cough and fatigue, with Acute Respiratory Distress Syndrome (ARDS) being the most common complication reported. Body temperatures above 39.0 °C, dyspnea, and anorexia were more common symptoms in severe patients. Aged over 65 years old, having co-morbidities, and developing complications were the commonest high-risk factors associated with severe conditions. Leucopenia and lymphopenia were the most common signs of infection while liver and kidney damage were rare but may cause bad outcomes for patients. The bilateral, multifocal Ground-Glass Opacification (GGO) on peripheral, and the consolidative pulmonary opacity were the most frequent CT results and the tendency of mortality rates differed by region. CONCLUSIONS: We provided a bird's-eye view of the COVID-19 during the current pandemic, which will help better understanding the key traits of the disease. The findings could be used for disease's future research, control and prevention
    • …
    corecore