4 research outputs found

    Single amino acid insertion allows functional transduction of murine hepatocytes with human liver tropic AAV capsids

    No full text
    Recent successes in clinical gene therapy applications have intensified the interest in using adeno-associated viruses (AAVs) as vectors for gene delivery into human liver. An inherent intriguing characteristic of AAVs is that vector variants vary substantially in their ability to transduce hepatocytes from different species. This has historically limited the value of preclinical studies using rodent models for predicting the efficiency of AAV vectors in liver-targeted gene therapy clinical studies. In this work, we aimed to investigate the key determinants of the observed differential interspecies transduction abilities among AAV variants. We took advantage of domain swapping strategies between AAV-KP1, a newly identified variant with enhanced murine liver tropism, and AAV3b, which functions poorly in mice. The systematic in vivo comparison of AAV3b/AAV-KP1 chimeric variants allowed us to identify a threonine insertion at position 265 within variable region I (VR-I) as the key residue that confers murine hepatic transduction to human-derived clade B (AAV2-like) and clade C (AAV3b-like) variants. We propose to use this insertion to generate phylogenetically related AAV surrogates in support of toxicology and dosing studies in the murine liver model

    Characterization of the humanized FRG mouse model and development of an AAV-LK03 variant with improved liver lobular biodistribution

    No full text
    Recent clinical successes have intensified interest in using adeno-associated virus (AAV) vectors for therapeutic gene delivery. The liver is a key clinical target, given its critical physiological functions and involvement in a wide range of genetic diseases. In the present study, we first investigated the validity of a liver xenograft mouse model repopulated with primary hepatocytes using single-nucleus RNA sequencing (sn-RNA-seq) by studying the transcriptomic profile of human hepatocytes pre- and post-engraftment. Complementary immunofluorescence analyses performed in highly engrafted animals confirmed that the human hepatocytes organize and present appropriate patterns of zone-dependent enzyme expression in this model. Next, we tested a set of rationally designed HSPG de-targeted AAV-LK03 variants for relative transduction performance in human hepatocytes. We used immunofluorescence, next-generation sequencing, and single-nucleus transcriptomics data from highly engrafted FRG mice to demonstrate that the optimally HSPG de-targeted AAV-LK03 displayed a significantly improved lobular transduction profile in this model

    Codon-Optimization of Wild-Type Adeno-Associated Virus Capsid Sequences Enhances DNA Family Shuffling while Conserving Functionality

    Get PDF
    Adeno-associated virus (AAV) vectors have become one of the most widely used gene transfer tools in human gene therapy. Considerable effort is currently being focused on AAV capsid engineering strategies with the aim of developing novel variants with enhanced tropism for specific human cell types, decreased human seroreactivity, and increased manufacturability. Selection strategies based on directed evolution rely on the generation of highly variable AAV capsid libraries using methods such as DNA-family shuffling, a technique reliant on stretches of high DNA sequence identity between input parental capsid sequences. This identity dependence for reassembly of shuffled capsids is inherently limiting and results in decreased shuffling efficiency as the phylogenetic distance between parental AAV capsids increases. To overcome this limitation, we have developed a novel codon-optimization algorithm that exploits evolutionarily defined codon usage at each amino acid residue in the parental sequences. This method increases average sequence identity between capsids, while enhancing the probability of retaining capsid functionality, and facilitates incorporation of phylogenetically distant serotypes into the DNA-shuffled libraries. This technology will help accelerate the discovery of an increasingly powerful repertoire of AAV capsid variants for cell-type and disease-specific applications. Keywords: AAV, library, directed evolution, codon optimization, DNA shuffling, capsi

    Limiting Thymic Precursor Supply Increases the Risk of Lymphoid Malignancy in Murine X-Linked Severe Combined Immunodeficiency

    No full text
    In early gene therapy trials for SCID-X1, using γ-retroviral vectors, T cell leukemias developed in a subset of patients secondary to insertional proto-oncogene activation. In contrast, we have reported development of T cell leukemias in SCID-X1 mice following lentivirus-mediated gene therapy independent of insertional mutagenesis. A distinguishing feature in our study was that only a proportion of transplanted γc-deficient progenitors were transduced and therefore competent for reconstitution. We hypothesized that reconstitution of SCID-X1 mice with limiting numbers of hematopoietic progenitors might be a risk factor for lymphoid malignancy. To test this hypothesis, in the absence of transduction, SCID-X1 mice were reconstituted with serially fewer wild-type hematopoietic progenitors. A robust inverse correlation between hematopoietic progenitor cell dose and T-lymphoid malignancy was observed, with earlier disease onset at lower cell doses. Malignancies were of donor origin and carried activating Notch1 mutations. These findings align with emerging evidence that thymocyte self-renewal induced by progenitor deprivation carries an oncogenic risk that is modulated by intra-thymic competition from differentiation-committed cells. Although insertional proto-oncogene activation is required for the development of malignancy in humans, failure of γc-deficient thymocytes to effectively compete with this at-risk cell population may have also contributed to oncogenesis observed in early SCID-X1 trials
    corecore