60 research outputs found

    SIGIFSDP: A Service Id Guided Intelligent Forwarding Service Discovery Protocol in Pervasive Computing Environments

    Get PDF
    Service discovery constructs a bridge between the service providers and the service consumers, and is a key point in pervasive computing environments. In group-based service discovery protocols, selective forwarding service requests only based on the service group maybe lead to unnecessary forwarding, which produces large packet redundancy. This paper proposes an efficient service discovery protocol: SIGIFSDP (Service Id Guided Intelligent Forwarding Service Discovery Protocol). In SIGIFSDP, based on GSD, SIGIF (Service Id Guided Intelligent Forwarding) is introduced to select the exact forwarding nodes based on the service id. Theoretical analysis and simulation results using GloMosim verify that SIGIFSDP can save the response time, reduce the service request packets, and improve the efficiency of service discovery

    Online tracking of ants based on deep association metrics: method, dataset and evaluation

    Get PDF
    Tracking movement of insects in a social group (such as ants) is challenging, because the individuals are not only similar in appearance but also likely to perform intensive body contact and sudden movement adjustment (start/stop, direction changes). To address this challenge, we introduce an online multi-object tracking framework that combines both the motion and appearance information of ants. We obtain the appearance descriptors by using the ResNet model for offline training on a small (N=50) sample dataset. For online association, a cosine similarity metric computes the matching degree between historical appearance sequences of the trajectory and the current detection. We validate our method in both indoor (lab setup) and outdoor video sequences. The results show that our model obtains 99.3% Ā± 0.5% MOTA and 91.9% Ā± 2.1% MOTP across 24,050 testing samples in five indoor sequences, with real-time tracking performance. In an outdoor sequence, we achieve 99.3% MOTA and 92.9% MOTP across 22,041 testing samples. The datasets and code are made publicly available for future research in relevant domains

    Full-body human motion reconstruction with sparse joint tracking using flexible sensors

    Get PDF
    Human motion tracking is a fundamental building block for various applications including computer animation, human-computer interaction, healthcare, etc. To reduce the burden of wearing multiple sensors, human motion prediction from sparse sensor inputs has become a hot topic in human motion tracking. However, such predictions are non-trivial as i) the widely adopted data-driven approaches can easily collapse to average poses. ii) the predicted motions contain unnatural jitters. In this work, we address the aforementioned issues by proposing a novel framework which can accurately predict the human joint moving angles from the signals of only four flexible sensors, thereby achieving the tracking of human joints in multi-degrees of freedom. Specifically, we mitigate the collapse to average poses by implementing the model with a Bi-LSTM neural network that makes full use of short-time sequence information; we reduce jitters by adding a median pooling layer to the network, which smooths consecutive motions. Although being bio-compatible and ideal for improving the wearing experience, the flexible sensors are prone to aging which increases prediction errors. Observing that the aging of flexible sensors usually results in drifts of their resistance ranges, we further propose a novel dynamic calibration technique to rescale sensor ranges, which further improves the prediction accuracy. Experimental results show that our method achieves a low and stable tracking error of 4.51 degrees across different motion types with only four sensors

    Robust elbow angle prediction with aging soft sensors via output-level domain adaptation

    Get PDF
    Wearable devices equipped with soft sensors provide a promising solution for body movement monitoring. Specifically, body movements like elbow flexion can be captured by monitoring the stretched soft sensorsā€™ resistance changes. However, in addition to stretching, the resistance of a soft sensor is also influenced by its aging, which makes the resistance a less stable indicator of the elbow angle. In this paper, we leverage the recent progress in Deep Learning and address the aforementioned issue by formulating the aging-invariant prediction of elbow angles as a domain adaption problem. Specifically, we define the soft sensor data (i.e., resistance values) collected at different aging levels as different domains and adapt a regression neural network among them to learn domain-invariant features. However, unlike the popular pairwise domain adaptation problem that only involves one source and one target domain, ours is more challenging as it has ā€œinfiniteā€ target domains due to the non-stop aging. To address this challenge, we novelly propose an output-level domain adaptation approach which builds on the fact that the elbow angles are in a fixed range regardless of aging. Experimental results show that our method enables robust and accurate prediction of elbow angles with aging soft sensors, which significantly outperforms supervised learning ones that fail to generalize to aged sensor data

    6mAPred-MSFF: A Deep Learning Model for Predicting DNA N6-Methyladenine Sites across Species Based on a Multi-Scale Feature Fusion Mechanism

    No full text
    DNA methylation is one of the most extensive epigenetic modifications. DNA N6-methyladenine (6mA) plays a key role in many biology regulation processes. An accurate and reliable genome-wide identification of 6mA sites is crucial for systematically understanding its biological functions. Some machine learning tools can identify 6mA sites, but their limited prediction accuracy and lack of robustness limit their usability in epigenetic studies, which implies the great need of developing new computational methods for this problem. In this paper, we developed a novel computational predictor, namely the 6mAPred-MSFF, which is a deep learning framework based on a multi-scale feature fusion mechanism to identify 6mA sites across different species. In the predictor, we integrate the inverted residual block and multi-scale attention mechanism to build lightweight and deep neural networks. As compared to existing predictors using traditional machine learning, our deep learning framework needs no prior knowledge of 6mA or manually crafted sequence features and sufficiently capture better characteristics of 6mA sites. By benchmarking comparison, our deep learning method outperforms the state-of-the-art methods on the 5-fold cross-validation test on the seven datasets of six species, demonstrating that the proposed 6mAPred-MSFF is more effective and generic. Specifically, our proposed 6mAPred-MSFF gives the sensitivity and specificity of the 5-fold cross-validation on the 6mA-rice-Lv dataset as 97.88% and 94.64%, respectively. Our model trained with the rice data predicts well the 6mA sites of other five species: Arabidopsis thaliana, Fragaria vesca, Rosa chinensis, Homo sapiens, and Drosophila melanogaster with a prediction accuracy 98.51%, 93.02%, and 91.53%, respectively. Moreover, via experimental comparison, we explored performance impact by training and testing our proposed model under different encoding schemes and feature descriptors
    • ā€¦
    corecore