6,236 research outputs found
Bounded-Distortion Metric Learning
Metric learning aims to embed one metric space into another to benefit tasks
like classification and clustering. Although a greatly distorted metric space
has a high degree of freedom to fit training data, it is prone to overfitting
and numerical inaccuracy. This paper presents {\it bounded-distortion metric
learning} (BDML), a new metric learning framework which amounts to finding an
optimal Mahalanobis metric space with a bounded-distortion constraint. An
efficient solver based on the multiplicative weights update method is proposed.
Moreover, we generalize BDML to pseudo-metric learning and devise the
semidefinite relaxation and a randomized algorithm to approximately solve it.
We further provide theoretical analysis to show that distortion is a key
ingredient for stability and generalization ability of our BDML algorithm.
Extensive experiments on several benchmark datasets yield promising results
- ā¦