36 research outputs found

    Novel Technology for Bio-diesel Production from Cooking and Waste Cooking Oil by Microwave Irradiation

    Get PDF
    AbstractIn the transitional process, acid or base catalysts are common technology to produce bio-diesel from waste cooking oil; however, the catalysts only can be use one time. Highly reaction time is requirement for the transitional technology. For improvement these concern issues, this study applied a novel technology to create bio-diesel product from cooking oil and waste cooking oil by microwave irritation. The microwave irradiation can provide strong power and reach reaction temperature in a short time. The SrO catalyst is a heterogeneous catalyst which is not dissolution into any liquid solution therefore, it can be recycling and reusing again.In this research, the optimum conditions were using commercial SrO, 40 to 180seconds reaction time, around 80oC reaction temperature, 6 methanol to oil ratio, and 1000W microwave power output. 99% and 93% biodiesel conversion efficiency for cooking oil and waste cooking oil were reached within in these conditions. The determined specifications of obtained biodiesel according to ASTM D6751 and EN14214 standards were in accordance with the required limits. As a conclusion, the present study indicates that derived fuel promises being an alternative for diesel, and could be used in engines without a major modification due to its qualifications

    Fabrication and Characterization of CuInSe 2

    Get PDF
    The chalcopyrite CuInSe2 thin film synthesized via a low temperature solid state reaction from CuSe and InSe powders was investigated using X-ray diffractomy (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), and UV-vis absorption spectroscopy. CuSe and InSe phases react and directly transform into CuInSe2 without the occurrence of any intermediate phase. The morphology of the newly formed CuInSe2 crystalline was close to that of the CuSe reactant particle based on the TEM results, which indicate that the solid state reaction kinetics may be dominated by the In3+ ions diffusion. The CuInSe2 thin film prepared from the solid state reaction did not use the selenide process; its band gap might reach 1.06 eV, which is competent and suitable to be used for a thin film solar cell light absorption layer

    The Infection of Chicken Tracheal Epithelial Cells with a H6N1 Avian Influenza Virus

    Get PDF
    Sialic acids (SAs) linked to galactose (Gal) in α2,3- and α2,6-configurations are the receptors for avian and human influenza viruses, respectively. We demonstrate that chicken tracheal ciliated cells express α2,3-linked SA, while goblet cells mainly express α2,6-linked SA. In addition, the plant lectin MAL-II, but not MAA/MAL-I, is bound to the surface of goblet cells, suggesting that SA2,3-linked oligosaccharides with Galβ1–3GalNAc subterminal residues are specifically present on the goblet cells. Moreover, both α2,3- and α2,6-linked SAs are detected on single tracheal basal cells. At a low multiplicity of infection (MOI) avian influenza virus H6N1 is exclusively detected in the ciliated cells, suggesting that the ciliated cell is the major target cell of the H6N1 virus. At a MOI of 1, ciliated, goblet and basal cells are all permissive to the AIV infection. This result clearly elucidates the receptor distribution for the avian influenza virus among chicken tracheal epithelial cells and illustrates a primary cell model for evaluating the cell tropisms of respiratory viruses in poultry

    Biomimetic Design for a Dual Concentric Porous Titanium Scaffold with Appropriate Compressive Strength and Cells Affinity

    No full text
    In repairing or replacing damaged bones, a dual concentric porous titanium scaffold (P-Tix-y) has emerged as a promising bio-mimic design. Herein, various P-Tix-y were made and sintered with relatively dense (x = 10, 20, or 30% porosity) and loose (y = 45, 55, or 65 porosity) structures. Firstly, NaCl was used as the pore-forming additive and followed by a hydrothermal removal method. The compressive strength of the as-formed P-Tix_y and surface morphology, nanomechanical property, and cells’ affinity on the cross-sectioned surface of P-Tix_y (CP-Tix_y) were then characterized. The results demonstrate that the compressive strength of P-Ti10_45, P-Ti20_45, or P-Ti20_55 exhibits a relatively mild decline (e.g., in the range of 181 and 97 MPa, higher than the required value of 70 MPa) and suitable porosities for the intended structure. Nano-hardness on the solid surface of CP-Tix_y shows roughly consistent with that of CP-Ti (i.e., ~8.78 GPa), thus, the porous structure of CP-Tix_y remains mostly unaffected by the addition of NaCl and subsequent sintering process. Most of the surfaces of CP-Tix_y exhibit high fibroblast (L929) cell affinity with low cell mortality. Notably, in the hFOB 1.19 cell adhesion and proliferation test, CP-Ti20_55 and CP-Ti20_65 reveal high cell viability, most probably relating with the assembly of dual porosities with interconnected pores. Overall, the sample P-Ti20_55 provides a relatively load-bearable design with high cell affinity and is thus promising as a three-dimensional bio-scaffold

    Recycled Steel Slag as a Porous Adsorbent to Filter Phosphorus-Rich Water with 8 Filtration Circles

    No full text
    Steel slag is a secondary product from steelmaking process through alkaline oxygen furnace or electric arc furnace (EAF). The disposal of steel slag has become a thorny environmental protection issue, and it is mainly used as unbound aggregates, e.g., as a secondary component of asphalt concrete used for road paving. In this study, the characteristics of compacted porous steel slag disc (SSD) and its application in phosphorous (P)-rich water filtration are discussed. The SSD with an optimal porosity of 10 wt% and annealing temperature of 900 °C, denoted as SSD-P (10, 900) meets a compressive strength required by ASTM C159-06, which has the capability of much higher than 90% P removal (with the effluent standard < 4 mg P/L) within 3 h, even after eight filtration times. No harmful substances from SSD have been detected in the filtered water, which complies with the effluent standard ISO 14001. The reaction mechanism for P-rich water filtration is mediated by water, followed by two reaction steps—CaO in SSD hydrolyzed from the matrix of SSD to Ca2+ and reacting with PO43−. However, the microenvironment of water is influenced by the pH value of the P-rich water at different filtration times and the kind of P-rich water with different free positive ion that interferes the reactions of the release of Ca2+. This study demonstrates the application of circular economy in reducing steel slag deposits, filtering P-rich water, and collecting Ca3(PO4)2 precipitate into fertilizers

    Heterogeneous Catalysts Using Strontium Oxide Agglomerates Depositing upon Titanium Plate for Enhancing Biodiesel Production

    No full text
    Strontium oxide (SrO) is an effective catalyst for transesterification. SrO powder that is firmly deposited onto a light titanium plate (TiO2_P), denoted as SrO/TiO2_P, can be reinforced by forming strontium titanate (SrTiO3) at the interface. Exposed SrO agglomerates can promote subsequent continuous transesterification process. In this work, conversion efficiency and production of biodiesel from olive oil on SrO/TiO2_P is investigated. The as-designed SrO/TiO2_P was followed by dip-coating and heat treatment. The physical properties of SrO/TiO2_P were verified through ASTM D3359; the chemical structures before and after transesterification, were respectively identified by X-ray photoelectron spectroscopy and Raman spectroscopy. A focused microwave heating system was utilized for transesterification. In the optimized sample SrO/TiO2_P (x) (x = 0.5 M), SrO firmly bonds with TiO2_P and forms the SrTiO3 structure. With the support of TiO2_P, the tested oil with SrO agglomerates subsequently reacts with SrO under microwave heating. The biodiesel conversion rate reaches 87.7% after a reaction time of 4 min, while the biodiesel product has an average of 39.37 MJ/kg of combustion heat and less than 1 vol% of water content. The as-designed SrO/TiO2_P (0.5) thus has great potential for biodiesel production and is promising with high stability in particular for a continuous fluid flow system

    SERS-Active Substrate with Collective Amplification Design for Trace Analysis of Pesticides

    No full text
    Health risks posed by the exposure to trace amounts of pesticide residue in agricultural products have gained a lot of concerns, due to their neurotoxic nature. The applications of surface-enhanced Raman Scattering (SERS) as a detection technique have consistently shown its potential as a rapid and sensitive means with minimal sample preparation. In this study, gold nanoparticles (Au NPs) in elliptical shapes were collected into a layer of ordered zirconia concave pores. The porous zirconia layer (pZrO2) was then deposited with Au NPs, denoted as Au NPs (x)/pZrO2, where x indicates the deposition thickness of Au NPs in nm. In the concave structure of pZrO2, Au-ZrO2 and Au-Au interactions provide a synergistic and physical mechanism of SERS, which is anticipated to collect and amplify SERS signals and thereafter improve the enhancement factor (EF) of Au NPs/pZrO2. By taking Rhodamine 6G (R6G) as the test molecule, EF of Au NPs/pZrO2 might reach to 7.0 × 107. Au NPs (3.0)/pZrO2 was then optimized and competent to detect pesticides, e.g., phosmet and carbaryl at very low concentrations, corresponding to the maximum residue limits of each, i.e., 0.3 ppm and 0.2 ppm, respectively. Au NPs (3.0)/pZrO2 also showed the effectiveness of distinguishing between phosmet and carbaryl under mixed conditions. Due to the strong affinities of the phosphoric groups and sulfur in phosmet to the Au NPs (3.0)/pZrO2, the substrate exhibited selective detection to this particular pesticide. In this study, Au NPs (3.0)/pZrO2 has thus demonstrated trace detection of residual pesticides, due to the substrate design that intended to provide collective amplification of SERS

    Microplasma Treatment versus Negative Pressure Therapy for Promoting Wound Healing in Diabetic Mice

    No full text
    The delayed healing response of diabetic wounds is a major challenge for treatment. Negative pressure wound therapy (NPWT) has been widely used to treat chronic wounds. However, it usually requires a long treatment time and results in directional growth of wound healing skin tissue. We investigated whether nonthermal microplasma (MP) treatment can promote the healing of skin wounds in diabetic mice. Splint excision wounds were created on diabetic mice, and various wound healing parameters were compared among MP treatment, NPWT, and control groups. Quantitative analysis of the re-epithelialization percentage by detecting Ki67 and DSG1 expression in the extending epidermal tongue (EET) of the wound area and the epidermal proliferation index (EPI) was subsequently performed. Both treatments promoted wound healing by enhancing wound closure kinetics and wound bed blood flow; this was confirmed through histological analysis and optical coherence tomography. Both treatments also increased Ki67 and DSG1 expression in the EET of the wound area and the EPI to enhance re-epithelialization. Increased Smad2/3/4 mRNA expression was observed in the epidermis layer of wounds, particularly after MP treatment. The results suggest that the Smad-dependent transforming growth factor β signaling contributes to the enhancement of re-epithelialization after MP treatment with an appropriate exposure time. Overall, a short-term MP treatment (applied for 30 s twice a day) demonstrated comparable or better efficacy to conventional NPWT (applied for 4 h once a day) in promoting wound healing in diabetic mice. Thus, MP treatment exhibits promise for treating diabetic wounds clinically

    Strontium Oxide Deposited onto a Load-Bearable and Porous Titanium Matrix as Dynamic and High-Surface-Contact-Area Catalysis for Transesterification

    No full text
    Strontium oxide (SrO) deposited onto a porous titanium (Ti)-based scaffold (P-Ti) is a promising and novel approach for high-throughput transesterification. Notably, a highly porous and calcinated scaffold provides a load-bearable support for a continuous process, while the calcinated SrO catalyst, as it is well distributed inside the porous matrix, can extend its surface contact area with the reactant. In this work, the formation of transesterification reaction with the conversion and production of olive oil to biodiesel inside the porous matrix is particularly examined. The as-designed SrO-coated porous titanium (Ti)-based scaffold with 55% porosity was prepared via a hydrothermal procedure, followed by a dip coating method. Mechanical tests of samples were conducted by a nanoindentator, whereas the physical and chemical structures were identified by IR and Raman Spectroscopies. The results implied that SrO catalysts can be firmly deposited onto a load-bearable, highly porous matrix and play an effective role for the transesterification reaction with the oil mass. It is promising to be employed as a load-bearable support for a continuous transesterification process, such as a process for batch or continuous biodiesel production, under an efficient heating source by a focused microwave system
    corecore