7 research outputs found

    BBOX1 promotes triple-negative breast cancer progression by controlling IP3R3 stability

    No full text
    Limited therapeutic options impede the clinical outcome of triple-negative breast cancer (TNBC). Our recent study uncovered a novel signaling pathway implicating gamma-butyrobetaine hydroxylase 1 (BBOX1) in the control of cell growth in TNBC, via inositol 1, 4, 5-trisphosphate receptor type 3 (IP3R3) mediated calcium signaling which is essential for cellular energy metabolism

    Hypoxia-Driven Effects in Cancer: Characterization, Mechanisms, and Therapeutic Implications

    No full text
    Hypoxia, a common feature of solid tumors, greatly hinders the efficacy of conventional cancer treatments such as chemo-, radio-, and immunotherapy. The depletion of oxygen in proliferating and advanced tumors causes an array of genetic, transcriptional, and metabolic adaptations that promote survival, metastasis, and a clinically malignant phenotype. At the nexus of these interconnected pathways are hypoxia-inducible factors (HIFs) which orchestrate transcriptional responses under hypoxia. The following review summarizes current literature regarding effects of hypoxia on DNA repair, metastasis, epithelial-to-mesenchymal transition, the cancer stem cell phenotype, and therapy resistance. We also discuss mechanisms and pathways, such as HIF signaling, mitochondrial dynamics, exosomes, and the unfolded protein response, that contribute to hypoxia-induced phenotypic changes. Finally, novel therapeutics that target the hypoxic tumor microenvironment or interfere with hypoxia-induced pathways are reviewed

    Optimized protocols for chromatin immunoprecipitation of exogenously expressed epitope-tagged proteins

    No full text
    Summary: Chromatin immunoprecipitation (ChIP) assay is widely used for investigating the interaction between DNA and DNA-binding proteins such as transcription factors, co-factors, or chromatin-associated proteins. However, a successful ChIP assay largely depends on the quality of a ChIP-grade primary antibody. In cases where specific antibodies are unavailable or with low binding affinity, here, we describe a tailored protocol to achieve robust and reproducible chromatin binding by expressing an exogenous epitope-tagged protein in cells, followed by ChIP assays using a tag-specific antibody.For complete details on the use and execution of this protocol, please refer to Fang et al. (2021)1 and Kidder et al. (2011).2 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics
    corecore