90 research outputs found

    The impact of free-air CO_2 enrichment (FACE) and N supply on growth, yield and quality of rice crops with large panicle

    Get PDF
    Because CO_2 is needed for plant photosynthesis, the increase in atmospheric [CO_2] has the potential to enhance the growth and development of plant. However, the resultant effects on growth, yield and quality of field-grown rice remain unclear, especially under differing nitrogen (N) availability and/or using cultivars with large panicles. To investigate these, a Free-Air CO_2 Enrichment (FACE) experiment was performed at Wuxi, Jiangsu, China, in 2001-03. A japonica cultivar with large panicle was exposed to two [CO_2] (ambient, ambient+200μmol mol^) at three levels of N supply (15, 25, 35gNm^). FACE accelerates phenology significantly, with 3-5 days earlier in heading and 6-9 days earlier in maturity across 3 years. FACE significantly increased the grain yield by 12.8%, which was mainly due to substantially increased panicle number per square meter (+19%) as result of significant increases in tillering occurrence speed. However the spikelet number per panicle was greatly reduced (-8%), which was due mainly to the significant increase in degenerated spikelets per panicle (+52%) while differentiated spikelets per panicle showed no change. Overall DM accumulation at harvest was stimulated somewhat more (+16%) by FACE, compared to grain yield, by an average of 13% by FACE, thus resulting in 3% reduction in harvest index. FACE caused significant reduction in shoot N concentration (-7%) and significant increase in P concentration (+14%) at grain maturity, resulting in significant increase in N use efficiency and significant reduction in P use efficiency. Both shoot N uptake (+9%) and P uptake (+33%) showed significant increase at harvest, which was mainly due to significant enhanced N and P uptake during early growth stage. On a per plant basis, FACE significantly increased cumulative root volume, root dry weight, adventitious root length and adventitious root number at heading, which was mainly associated with significant increases in root growth rate during early growth period, while total surface area, active adsorption area and root oxidation activity per unit root dry weight showed significant reduction. As for grain quality, FACE cause deterioration of processing suitability and appearance quality drastically, the nutritive value of grain was also negatively influenced by FACE due to a reduction in grain protein and Cu concentration. By contrast, FACE resulted in better eating/cooking quality. For most cases, no [CO_2]×N interaction was detected for the growth, yield and quality parameters. Data from this study has important implications for fertilizer (e.g. N, P) management and variety selection in rice production systems under future elevated [CO_2] conditions.Special Revie

    LBH589 Inhibits proliferation and metastasis of hepatocellular carcinoma via inhibition of gankyrin/stat3/akt pathway

    Get PDF
    Background: Gankyrin has shown to be overexpressed in human liver cancers and plays a complex role in hepatocarcinogenesis. Panobinostat (LBH589), a new hydroxamic acid-derived histone deacetylase inhibitor has shown promising anticancer effects recently. Here, we investigated the potential of LBH589 as a form of treatment for hepatocellular carcinoma (HCC). Methods: Gankyrin plasmid was transfected into HCC cells, and the cells were selected for more than 4 weeks by incubation with G418 for overexpression clones. The therapeutic effects of LBH589 were evaluated in vitro and in vivo. Cell proliferation, apoptosis, cell cycle, invasive potential, and epithelial-mesenchy-mal transition (EMT) were examined. Results: LBH589 significantly inhibited HCC growth and metastasis in vitro and in vivo. Western blotting analysis indicated that LBH589 could decrease the expression of gankyrin and subsequently reduced serine-phosphorylated Akt and tyrosine-phosphorylated STAT3 expression although the total Akt and STAT3 were unaffected. LBH589 inhibited metastasis in vitro via down-regulation of N-cadherin, vimentin, TWIST1, VEGF and up-regulation of E-cadherin. LBH589 also induced apoptosis and G1 phase arrest in HCC cell lines. Ectopic expression of gankyrin attenuated the effects of LBH589, which indicates that gankyrin might play an important role in LBH589 mediated anticancer effects. Lastly, in vivo study indicated that LBH589 inhibited tumor growth and metastasis, without discernable adverse effects comparing to control group, with abrogating gankyrin/STAT3/Akt pathway. Conclusions: Our results suggested that LBH589 could inhibit HCC growth and metastasis through down-regulating gankyrin/STAT3/Akt pathway. LBH589 may present itself as a novel therapeutic strategy for HCC

    Nutlin-3 overcomes arsenic trioxide resistance and tumor metastasis mediated by mutant p53 in Hepatocellular Carcinoma

    Get PDF
    Background: Arsenic trioxide has been demonstrated as an effective anti-cancer drug against leukemia and solid tumors both in vitro and in vivo. However, recent phase II trials demonstrated that single agent arsenic trioxide was poorly effective against hepatocellular carcinoma (HCC), which might be due to drug resistance. Methods: Mutation detection of p53 gene in arsenic trioxide resistant HCC cell lines was performed. The therapeutic effects of arsenic trioxide and Nutlin-3 on HCC were evaluated both in vitro and in vivo. A series of experiments including MTT, apoptosis assays, co-Immunoprecipitation, siRNA transfection, lentiviral infection, cell migration, invasion, and epithelial-mesenchy-mal transition (EMT) assays were performed to investigate the underlying mechanisms. Results: The acquisition of p53 mutation contributed to arsenic trioxide resistance and enhanced metastatic potential of HCC cells. Mutant p53 (Mutp53) silence could re-sensitize HCC resistant cells to arsenic trioxide and inhibit the metastatic activities, while mutp53 overexpression showed the opposite effects. Neither arsenic trioxide nor Nutlin-3 could exhibit obvious effects against arsenic trioxide resistant HCC cells, while combination of them showed significant effects. Nutlin-3 can not only increase the intracellular arsenicals through inhibition of p-gp but also promote the p73 activation and mutp53 degradation mediated by arsenic trioxide. In vivo experiments indicated that Nutlin-3 can potentiate the antitumor activities of arsenic trioxide in an orthotopic hepatic tumor model and inhibit the metastasis to lung. Conclusions: Acquisitions of p53 mutations contributed to the resistance of HCC to arsenic trioxide. Nutlin-3 could overcome arsenic trioxide resistance and inhibit tumor metastasis through p73 activation and promoting mutant p53 degradation mediated by arsenic trioxide

    Diphenyl Difluoroketone: A Potent Chemotherapy Candidate for Human Hepatocellular Carcinoma

    Get PDF
    Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, was recently reported to inhibit proliferation of various cancer cells significantly. Here we try to determine the effect and mechanism of EF24 on hepatocellular carcinoma. 2 µM EF24 was found to inhibit the proliferation of PLC/PRF/5, Hep3B, HepG2, SK-HEP-1 and Huh 7 cell lines. However, even 8 µM EF24 treatment did not affect the proliferation of normal liver LO2 cells. Accordingly, 20 mg/kg/d EF24 inhibited the growth of the tumor xenografts conspicuously while causing no apparent change in liver, spleen or body weight. In addition, significant apoptosis and G2/M phase cell cycle arrest were found using flow cytometry. Besides, caspases and PARP activation and features typical of apoptosis including fragmented nuclei with condensed chromatin were also observed. Furthermore, the mechanism was targeted at the reduction of nuclear factor kappa b (NF-κB) pathway and the NF-κB–regulated gene products Bcl-2, COX-2, Cyclin B1. Our study has offered a strategy that EF24 being a therapeutic agent for hepatocellular carcinoma

    Prevalence of gastroparesis in diabetic patients: a systematic review and meta-analysis

    No full text
    Abstract Although there was no significant heterogeneity in the meta-publication, sensitivity analyses revealed significant heterogeneity. Overall, the prevalence was higher in women (N = 6, R = 4.6%, 95% CI 3.1%, 6.0%, and I2 = 99.8%) than in men (N = 6, R = 3.4%, 95% CI 2.0%, 4.7%, and I2 = 99.6the %); prevalence of type 2 diabetes (N = 9, R = 12.5%, 95% CI 7.7%, 17.3%, and I2 = 95.4%) was higher than type 1 diabetes (N = 7, R = 8.3%, 95% CI 6.4%, 10.2%, and I2 = 93.6%); the prevalence of DGP was slightly lower in DM patients aged over 60 years (N = 6, R = 5.5%, 95% CI 3.3%, 7.7%, and I2 = 99.9%) compared to patients under 60 years of age (N = 12, R = 15.8%, 95% CI 11 15.8%, 95% CI 11.4%, 20.2%, and I2 = 88.3%). In conclusion, our findings indicate that the combined estimated prevalence of gastroparesis in diabetic patients is 9.3%. However, the sensitivity of the results is high, the robustness is low, and there are significant bias factors. The subgroup analysis revealed that the prevalence of DM-DGP is associated with factors such as gender, diabetes staging, age, and study method

    Study of the Performance of Deep Learning Methods Used to Predict Tidal Current Movement

    No full text
    To predict tidal current movement accurately is essential in the process of tidal energy development. However, the existing methods have limits to meet the need for accuracy. Recently, artificial intelligence technology has been widely applied to solve this problem. In this paper, a tidal current prediction model combining numerical simulation with deep learning methods is proposed. It adopts three deep learning algorithms for comparative investigations: multilayer perceptron (MLP), long-short term memory (LSTM) and attention-ResNet neural network (AR-ANN). The numerical simulation was carried out using ROMS, and the observation collected in the Zhoushan region were used to validate the results. Compared with the numerical simulations, deep learning methods can increase the original correlation coefficient from 0.4 to over 0.8. In comparison, the AR-ANN model shows excellent performance in both the meridional and zonal components. This advantage of deep learning algorithms is extended in the tidal energy resource assessment process, with MLP, LSTM and AR-ANN models reducing the root mean square error by 32.9%, 34.4% and 42%, respectively. The new method can be used to accurately predict the hydrodynamic of tidal flow in the process of tidal energy extraction, which contributes to determine the suitable location for energy generation and tidal turbine design

    Effects of Fluorine-Based Modification on Triboelectric Properties of Cellulose

    No full text
    The hydroxyl groups on the cellulose macromolecular chain cause the cellulose surface to have strong reactivity. In this study, 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PDOTES) was used to modify cellulose to improve its triboelectric properties, and a triboelectric nanogenerator (TENG) was assembled. The introduction of fluorine groups reduced the surface potential of cellulose and turned it into a negative phase, which enhanced the ability to capture electrons. The electrical properties increased by 30% compared with unmodified cellulose. According to the principles of TENGs, a self-powered human-wearable device was designed using PDOTES-paper, which could detect movements of the human body, such as walking and running, and facilitated a practical method for the preparation of efficient wearable sensors
    corecore