36 research outputs found

    Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator

    Get PDF
    Newly synthesized proteins that do not fold correctly in the ER are targeted for ER-associated protein degradation (ERAD) through distinct sorting mechanisms; soluble ERAD substrates require ER-Golgi transport and retrieval for degradation, whereas transmembrane ERAD substrates are retained in the ER. Retained transmembrane proteins are often sequestered into specialized ER subdomains, but the relevance of such sequestration to proteasomal degradation has not been explored. We used the yeast Saccharomyces cerevisiae and a model ERAD substrate, the cystic fibrosis transmembrane conductance regulator (CFTR), to explore whether CFTR is sequestered before degradation, to identify the molecular machinery regulating sequestration, and to analyze the relationship between sequestration and degradation. We report that CFTR is sequestered into ER subdomains containing the chaperone Kar2p, and that sequestration and CFTR degradation are disrupted in sec12ts strain (mutant in guanine-nucleotide exchange factor for Sar1p), sec13ts strain (mutant in the Sec13p component of COPII), and sec23ts strain (mutant in the Sec23p component of COPII) grown at restrictive temperature. The function of the Sar1p/COPII machinery in CFTR sequestration and degradation is independent of its role in ER-Golgi traffic. We propose that Sar1p/COPII-mediated sorting of CFTR into ER subdomains is essential for its entry into the proteasomal degradation pathway. These findings reveal a new aspect of the degradative mechanism, and suggest functional crosstalk between the secretory and the degradative pathways

    An LADRC Controller to Improve the Robustness of the Visual Tracking and Inertial Stabilized System in Luminance Variation Conditions

    No full text
    Disturbance from luminance variation in the identification of visual sensors causes instability in the control system of target tracking, which leads to field of vision (FOV) motion and even the target missing. To solve this problem, a linear active disturbance reject controller (LADRC) is adopted to the visual tracking and inertial stable platform (VTISP) for the first time to improve the system’s robustness. As a result, the random disturbance from identification can be smoothed by the tracking differentiator (TD).An improved linear extended state observer (LESO) modified by the TD is provided to obtain the high-order state variables for feedback. That makes the system avoid noise in a differential process from the MEMS gyroscope and enhances the response time and stability in tracking control. Finally, simulation and experimental studies are conducted, and the feasibility of the LADRC is verified. Moreover, compared with the other controller in the VTISP for remote sensing, the superiority of the LADRC in system response time and stability is proved by the experiments

    An LADRC Controller to Improve the Robustness of the Visual Tracking and Inertial Stabilized System in Luminance Variation Conditions

    No full text
    Disturbance from luminance variation in the identification of visual sensors causes instability in the control system of target tracking, which leads to field of vision (FOV) motion and even the target missing. To solve this problem, a linear active disturbance reject controller (LADRC) is adopted to the visual tracking and inertial stable platform (VTISP) for the first time to improve the system’s robustness. As a result, the random disturbance from identification can be smoothed by the tracking differentiator (TD).An improved linear extended state observer (LESO) modified by the TD is provided to obtain the high-order state variables for feedback. That makes the system avoid noise in a differential process from the MEMS gyroscope and enhances the response time and stability in tracking control. Finally, simulation and experimental studies are conducted, and the feasibility of the LADRC is verified. Moreover, compared with the other controller in the VTISP for remote sensing, the superiority of the LADRC in system response time and stability is proved by the experiments

    A Camera Stabilized Platform Based on the Feedforward Strap-Down Control with Approximate Dead-Zone Model and a Compensator with LESO

    No full text
    A feedforward strap-down control with a compensator base on the linear extended state observer (LESO) is proposed for a miniaturized camera stabilized platform, which reduces the influence of the dead zone in speed regulation and uncertainties in parameters to reduce the level of angular bias to the field of vision (FOV) in a low-cost stabilized platform. Firstly, the feedforward control is inspired by an approximate linear model proposed for the dead zone to improve the response velocity of the system when tracking the varying reference. Then, the compensator, combining the LESO and proportional differential (PD) law, is designed to eliminate the disturbances including the model bias in the dead zone, inaccuracy in the plant model, and external disturbance. Moreover, the observation performance of the LESO is improved by a preprocessor based on a tracking differentiator (TD) to deal with the time delay and nonlinearities in sampling the state variables. Meanwhile, the complex and uncertain control plant is also simplified by an approximate model combining a disturbance compensator for practical application. Finally, the feasibility of the proposed controller is verified and analyzed by the simulation, and its effectiveness is simultaneously validated by the 2-DOF camera stabilized platform
    corecore