34 research outputs found

    Structural Basis of Enzymatic Activity for the Ferulic Acid Decarboxylase (FADase) from Enterobacter sp. Px6-4

    Get PDF
    Microbial ferulic acid decarboxylase (FADase) catalyzes the transformation of ferulic acid to 4-hydroxy-3-methoxystyrene (4-vinylguaiacol) via non-oxidative decarboxylation. Here we report the crystal structures of the Enterobacter sp. Px6-4 FADase and the enzyme in complex with substrate analogues. Our analyses revealed that FADase possessed a half-opened bottom β-barrel with the catalytic pocket located between the middle of the core β-barrel and the helical bottom. Its structure shared a high degree of similarity with members of the phenolic acid decarboxylase (PAD) superfamily. Structural analysis revealed that FADase catalyzed reactions by an “open-closed” mechanism involving a pocket of 8×8×15 Å dimension on the surface of the enzyme. The active pocket could directly contact the solvent and allow the substrate to enter when induced by substrate analogues. Site-directed mutagenesis showed that the E134A mutation decreased the enzyme activity by more than 60%, and Y21A and Y27A mutations abolished the enzyme activity completely. The combined structural and mutagenesis results suggest that during decarboxylation of ferulic acid by FADase, Trp25 and Tyr27 are required for the entering and proper orientation of the substrate while Glu134 and Asn23 participate in proton transfer

    Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees

    Get PDF
    Data accessibility statement: Full census data are available upon reasonable request from the ForestGEO data portal, http://ctfs.si.edu/datarequest/ We thank Margie Mayfield, three anonymous reviewers and Jacob Weiner for constructive comments on the manuscript. This study was financially supported by the National Key R&D Program of China (2017YFC0506100), the National Natural Science Foundation of China (31622014 and 31570426), and the Fundamental Research Funds for the Central Universities (17lgzd24) to CC. XW was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB3103). DS was supported by the Czech Science Foundation (grant no. 16-26369S). Yves Rosseel provided us valuable suggestions on using the lavaan package conducting SEM analyses. Funding and citation information for each forest plot is available in the Supplementary Information Text 1.Peer reviewedPostprin

    Equilibrium Price and Dynamic Virtual Resource Allocation for Wireless Network Virtualization

    No full text
    Economic and technical features are equally important to radio resource allocation in wireless network virtualization (WNV). Regarding virtual resource (VR) as commodity, this paper proposes an effective VR allocation scheme for WNV from the perspective of the market-equilibrium theory. First, physical meaning clear utility functions are defined to characterize the network benefits of user equipments (UEs), infrastructure providers (InPs) and virtual network operators (VNOs) in WNV. Then, the VR allocation problem between one InP and multiple VNOs is formulated as a multi-objective optimization problem. To reduce the algorithm complexity, the multiple-objective problem is first decoupled into two single-objective sub-problems. The supplier-layer sub-problem aims to maximize the benefit of the unique InP, while the customer-layer sub-problem aims to maximize the benefits of the multiple VNOs. Both of the separated sub-problems are solved by using standard convex optimization method, and are combined by searching for the equilibrium-price (EP) of the VR market. As a result, the Pareto optimal solution of the original multi-objective problem is found, at which no one (the InP or anyone of the VNOs) can increase its benefit by deviating the EP without hurting others’ benefits. The effectiveness of the proposed VR allocation scheme is testified through extensive experiments
    corecore