12 research outputs found

    The Influence of Effective Microorganisms on Microbes and Nutrients in Kiwifruit Planting Soil

    No full text
    To understand the effects of effective microorganisms (EMs) containing multiple strains on microbes and nutrients in kiwifruit planting soil, EMs prepared with four different strains were added to kiwifruit planting soil monthly from April to August. The counts of bacteria, fungi, actinomycetes, and total microbes were determined. The pH, total nitrogen (TN), alkali-hydrolyzable nitrogen (A-N), organic matter (OM), available potassium (A-K), and available phosphorus (A-P) of the soil were measured. Results indicated that the counts of bacteria, fungi, actinomycetes, and total microbes reached 60.33 × 105, 4.00 × 105, 0.92 × 105, and 65.25 × 105 CFU/g, respectively, in August, all of which were higher than those of the control group (CK). The bacterial count of the experimental group (EG) was higher than that of the CK in August. The pH-values of the EG were always lower than those of the CK. In August, the TN content of the EG was 1.52 g/kg, which was higher than that of the CK (1.35 g/kg). A significant negative association between the actinomycetes count and TN (p < 0.05) was found. For A-N and OM, the content of the EG (A-N, 125.18 mg/kg; OM, 49.84 mg/kg) was roughly the same as that of the CK (A-N, 112.51 mg/kg; OM, 53.11 mg/kg) in August. However, the A-K and A-P contents of the EG (A-K, 145.25 mg/kg; A-P, 111.25 mg/kg) were lower than those of the CK (A-K, 182.52 mg/kg; A-P, 202.19 mg/kg) in August. Results show that application of EMs in kiwifruit planting soil can increase the counts of soil microbes and might promote the absorption of major nutrients for kiwifruit tree

    Release of Heavy Metals from the Pyrite Tailings of Huangjiagou Pyrite Mine: Batch Experiments

    No full text
    To provide the basic information about the release of heavy metals from the pyrite tailings of Huangjiagou pyrite mine, the pyrite tailings were investigated through a series of batch experiments under different initial pH of extractant, temperature, liquid-solid (LS) ratio, and soaking time conditions. Moreover, calcium carbonate was added in the pyrite tailings to determine the reduction effect on the release of heavy metals. The results show that Fe, Cr, Cu, Mn, Zn, and Ni were the major heavy metals in the pyrite tailings. Low initial pH and high LS ratio significantly promoted Fe, Cu, Mn, Ni, and Zn release, and high temperature significantly promoted Fe, Cu, Mn, and Ni release. Only small amounts of Cr were detected at low LS ratios. With the increase of soaking time, the released amount of Fe, Cu, Mn, Ni, and Zn increased to the maximum value within 48 h, respectively. After adding calcium carbonate, the released amounts of Fe, Cu, and Zn reduced at least 70.80% within 48 h soaking time. The results indicate that summer and the early soaking stage are the main phases for the release of heavy metals from the pyrite tailings. In the pyrite tailings, Cr is difficult to release. Adding calcium carbonate can effectively reduce the release of Fe, Cu, and Zn

    Na4P2O7-Modified Biochar Derived from Sewage Sludge: Effective Cu(II)-Adsorption Removal from Aqueous Solution

    No full text
    With the rapid development of industrialization, the amount of copper-containing wastewater is increasing, thereby posing a threat to the aquatic ecological environment and human health. Sludge biochar has received extensive concern in recent years due to its advantages of low cost and sustainability for the treatment of heavy-metal-containing wastewater. However, the heavy-metal-adsorption capacity of sludge biochar is limited. This study prepared a sodium pyrophosphate- (Na4P2O7-) modified municipal sludge-based biochar (SP-SBC) and evaluated its adsorption performance for Cu(II). Results showed that SP-SBC had higher yield, ash content, pH, Na and P content, and surface roughness than original sewage sludge biochar (SBC). The Cu(II)-adsorption capacity of SP-SBC was 4.55 times than that of SBC at room temperature. For Cu(II) adsorption by SP-SBC, the kinetics and isotherms conformed to the pseudo-second-order model and the Langmuir–Freundlich model, respectively. The maximum adsorption capacity of SP-SBC was 38.49 mg·g−1 at 35°C. Cu(II) adsorption by SP-SBC primarily involved ion exchange, electrostatic attraction, and precipitation. The desired adsorption performance for Cu(II) in the fixed-bed column experiment indicated that SP-SBC can be reused and had good application potential to treat copper-containing wastewater. Overall, this study provided a desirable sorbent (SP-SBC) for Cu(II) removal, as well as a new simple chemical-modification method for SBC to enhance Cu(II)-adsorption capacity

    Methane Emissions Driven by Adding a Gradient of Ethanol as Carbon Source in Integrated Vertical-Flow Constructed Wetlands

    No full text
    This work aims to investigate the methane emissions from integrated vertical-flow constructed wetlands (IVCWs) when ethanol is added as an external carbon source. In this study, a gradient of ethanol (0, 2, 4, 8, 16 and 32 mmol/L) was added as the carbon source in an IVCW planted with Cyperus alternifolius L. The results showed that the methane emission flux at an ethanol concentration of 32 mmol/L was 32.34 g CH4 m−2 day−1 less than that of the control experiment (0 mmol/L) and that the methane emission flux at an ethanol concentration of 16 mmol/L was 5.53 g CH4 m−2 day−1 less than that at 0 mmol/L. In addition, variations in the water quality driven by the different ethanol concentrations were found, with a redox potential range of −64 mV to +30 mV, a pH range of 6.6–6.9, a chemical oxygen demand (COD) removal rate range of 41% to 78%, and an ammonia nitrogen removal rate range of 59% to 82% after the ethanol addition. With the average CH4-C/TOC (%) value of 35% driven by ethanol, it will be beneficial to understand that CH4-C/TOC can be considered an ecological indicator of anthropogenic methanogenesis from treatment wetlands when driven by carbon sources or carbon loading. It can be concluded that adding ethanol as an external carbon source can not only meet the water quality demand of the IVCW treatment system but also stimulate and increase the average CH4 emissions from IVCWs by 23% compared with the control experiment. This finding indicates that an external carbon source can stimulate more CH4 emissions from IVCWs and shows the importance of carbon sources during sewage treatment processes when considering greenhouse emissions from treated wetlands
    corecore