1,269 research outputs found

    Interpreting The 750 GeV Diphoton Excess Within Topflavor Seesaw Model

    Get PDF
    We propose to interpret the 750 GeV diphoton excess in a typical topflavor seesaw model. The new resonance X can be identified as a CP-even scalar emerging from a certain bi-doublet Higgs field. Such a scalar can couple to charged scalars, fermions as well as heavy gauge bosons predicted by the model, and consequently all of the particles contribute to the diphoton decay mode of the X. Numerical analysis indicates that the model can predict the central value of the diphoton excess without contradicting any constraints from 8 TeV LHC, and among the constraints, the tightest one comes from the Z \gamma channel, \sigma_{8 {\rm TeV}}^{Z \gamma} \lesssim 3.6 {\rm fb}, which requires \sigma_{13 {\rm TeV}}^{\gamma \gamma} \lesssim 6 {\rm fb} in most of the favored parameter space.Comment: Major changes, 17 pages, 4 figure, typos corrected, calculation details adde

    Generalized Bayesian Multidimensional Scaling and Model Comparison

    Full text link
    Multidimensional scaling is widely used to reconstruct a map with the points' coordinates in a low-dimensional space from the original high-dimensional space while preserving the pairwise distances. In a Bayesian framework, the current approach using Markov chain Monte Carlo algorithms has limitations in terms of model generalization and performance comparison. To address these limitations, a general framework that incorporates non-Gaussian errors and robustness to fit different types of dissimilarities is developed. Then, an adaptive inference method using annealed Sequential Monte Carlo algorithm for Bayesian multidimensional scaling is proposed. This algorithm performs inference sequentially in time and provides an approximate posterior distribution over the points' coordinates in a low-dimensional space and an unbiased estimator for the marginal likelihood. In this study, we compare the performance of different models based on marginal likelihoods, which are produced as a byproduct of the adaptive annealed Sequential Monte Carlo algorithm. Using synthetic and real data, we demonstrate the effectiveness of the proposed algorithm. Our results show that the proposed algorithm outperforms other benchmark algorithms under the same computational budget based on common metrics used in the literature. The implementation of our proposed method and applications are available at https://github.com/nunujiarui/GBMDS
    • …
    corecore