3 research outputs found

    Transcription Profile Analysis Reveals That Zygotic Division Results in Uneven Distribution of Specific Transcripts in Apical/Basal Cells of Tobacco

    Get PDF
    BACKGROUND: Asymmetric zygotic division in higher plants results in the formation of an apical cell and a basal cell. These two embryonic cells possess distinct morphologies and cell developmental fates. It has been proposed that unevenly distributed cell fate determinants and/or distinct cell transcript profiles may be the underlying reason for their distinct fates. However, neither of these hypotheses has convincing support due to technical limitations. METHODOLOGY/PRINCIPAL FINDINGS: Using laser-controlled microdissection, we isolated apical and basal cells and constructed cell type-specific cDNA libraries. Transcript profile analysis revealed difference in transcript composition. PCR and qPCR analysis confirmed that transcripts of selected embryogenesis-related genes were cell-type preferentially distributed. Some of the transcripts that existed in zygotes were found distinctly existed in apical or basal cells. The cell type specific de novo transcription was also found after zygotic cell division. CONCLUSIONS/SIGNIFICANCE: Thus, we found that the transcript diversity occurs between apical and basal cells. Asymmetric zygotic division results in the uneven distribution of some embryogenesis related transcripts in the two-celled proembryos, suggesting that a differential distribution of some specific transcripts in the apical or basal cells may involve in guiding the two cell types to different developmental destinies

    Comparative Metabolomics Reveals Two Metabolic Modules Affecting Seed Germination in Rice (Oryza sativa)

    No full text
    The process of seed germination is crucial not only for the completion of the plant life cycle but also for agricultural production and food chemistry; however, the underlying metabolic regulation mechanism involved in this process is still far from being clearly revealed. In this study, one indica variety (Zhenshan 97, with rapid germination) and one japonica variety (Nipponbare, with slow germination) in rice were used for in-depth analysis of the metabolome at different germination stages (0, 3, 6, 9, 12, 24, 36, and 48 h after imbibition, HAI) and exploration of key metabolites/metabolic pathways. In total, 380 annotated metabolites were analyzed by using a high-performance liquid chromatography (HPLC)-based targeted method combined with a nontargeted metabolic profiling method. By using bioinformatics and statistical methods, the dynamic changes in metabolites during germination in the two varieties were compared. Through correlation analysis, coefficient of variation analysis and differential accumulation analysis, 74 candidate metabolites that may be closely related to seed germination were finally screened. Among these candidates, 29 members belong to the ornithine–asparagine–polyamine module and the shikimic acid–tyrosine–tryptamine–phenylalanine–flavonoid module. As the core member of the second module, shikimic acid’s function in the promotion of seed germination was confirmed by exogenous treatment. These results told that nitrogen flow and antioxidation/defense responses are potentially crucial for germinating seeds and seedlings. It deepens our understanding of the metabolic regulation mechanism of seed germination and points out the direction for our future research
    corecore