99 research outputs found

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Ginsenoside Rb1 ameliorates the abnormal hepatic glucose metabolism by activating STAT3 in T2DM mice

    No full text
    Ginsenoside Rb1, a major bioactive component of Panax ginseng C. A. Mey., exerts beneficial effects on type 2 diabetes mellitus (T2DM), but its underlying mechanism is unclear. STAT3 is a key factor regulating energy metabolism. Herein, we tested whether Rb1 regulates STAT3-controlled hepatic glucose metabolism to ameliorate T2DM. Rb1 ameliorated abnormal hepatic glucose metabolism, insulin resistance, and liver steatosis in T2DM mice. Hepatic STAT3 phosphorylation was decreased in T2DM and increased after Rb1 treatment. Moreover, Rb1 reversed the decreased expressions of glycolytic enzymes and the increased expressions of gluconeogenic enzymes in T2DM. STAT3 activation increased the expressions of glycolytic enzymes and decreased the expressions of gluconeogenic enzymes in vitro, and vice versa. Further, STAT3 inhibition reversed the changes of these enzymes induced by Rb1 in insulin-resistant cells. Taken together, Rb1 ameliorated abnormal hepatic glucose metabolism in T2DM in a STAT3-dependent manner, which provides experimental bases for Rb1 in treating T2DM

    Study on Stress Evolution Law of Overburden under Repeated Mining in Long-Distance Double Upper Protective Layer

    No full text
    Upper protective seam mining has been widely applied in China, but the theory of long-distance multiple upper protective seam mining is not yet perfect. In order to investigate the overburden stress evolution law of repetitive mining of long-distance coal seam groups, an experimental study was conducted to simulate similar materials under repeated mining conditions in the long-distance double upper protective layer in the background of Pingmei Group 8th coal mine. By analyzing the roof-collapse structure and the stress evolution law of different layers of the floor during the superposition mining, the pressure-relief range of the protective layer after the mining of the double upper protective layer was determined. The study results showed that: the pressure relief of the protective layer in the long-distance upper protective layer mining was a dynamic process. After the mining of Group D coal seam, the maximum impact depth of the bottom plate could reach 182 m, and the pressure-relief angle of the upper side of Group E coal seam was 65°, and the pressure-relief angle of the lower side was 75°. The distance behind the vertical projection of the working face of Group D was 42 m. The overlapping back mining would affect the stress distribution of Group F coal seam. The pressure-relief angle of the upper side of Group F coal seam was 88°, and the pressure-relief angle of the lower side was greater than 78°. The distance behind the vertical projection of the working face of Group E was less than 61 m. The superposition and staggered mining of double protective layers could expand the protective layer. Through the verification of the measurement of gas parameters on site, it can be seen from the results that it has a certain protection effect. The research results can enrich the theory of long-distance multiple upper protective layer mining, and provide theoretical guidance for long-distance Coal Seam Group Mining in Pingmei coal-mine area

    Study on Stress Evolution Law of Overburden under Repeated Mining in Long-Distance Double Upper Protective Layer

    No full text
    Upper protective seam mining has been widely applied in China, but the theory of long-distance multiple upper protective seam mining is not yet perfect. In order to investigate the overburden stress evolution law of repetitive mining of long-distance coal seam groups, an experimental study was conducted to simulate similar materials under repeated mining conditions in the long-distance double upper protective layer in the background of Pingmei Group 8th coal mine. By analyzing the roof-collapse structure and the stress evolution law of different layers of the floor during the superposition mining, the pressure-relief range of the protective layer after the mining of the double upper protective layer was determined. The study results showed that: the pressure relief of the protective layer in the long-distance upper protective layer mining was a dynamic process. After the mining of Group D coal seam, the maximum impact depth of the bottom plate could reach 182 m, and the pressure-relief angle of the upper side of Group E coal seam was 65°, and the pressure-relief angle of the lower side was 75°. The distance behind the vertical projection of the working face of Group D was 42 m. The overlapping back mining would affect the stress distribution of Group F coal seam. The pressure-relief angle of the upper side of Group F coal seam was 88°, and the pressure-relief angle of the lower side was greater than 78°. The distance behind the vertical projection of the working face of Group E was less than 61 m. The superposition and staggered mining of double protective layers could expand the protective layer. Through the verification of the measurement of gas parameters on site, it can be seen from the results that it has a certain protection effect. The research results can enrich the theory of long-distance multiple upper protective layer mining, and provide theoretical guidance for long-distance Coal Seam Group Mining in Pingmei coal-mine area
    • 

    corecore