2,303 research outputs found

    TLS-bridged co-prediction of tree-level multifarious stem structure variables from worldview-2 panchromatic imagery: a case study of the boreal forest

    Full text link
    In forest ecosystem studies, tree stem structure variables (SSVs) proved to be an essential kind of parameters, and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing the frontier studies on marcoecosystem ecology and global carbon cycle. For this newly emerging task, satellite imagery such as WorldView-2 panchromatic images (WPIs) is used as a potential solution for co-prediction of tree-level multifarious SSVs, with static terrestrial laser scanning (TLS) assumed as a ‘bridge’. The specific operation is to pursue the allometric relationships between TLS-derived SSVs and WPI-derived feature parameters, and regression analyses with one or multiple explanatory variables are applied to deduce the prediction models (termed as Model1s and Model2s). In the case of Picea abies, Pinus sylvestris, Populus tremul and Quercus robur in a boreal forest, tests showed that Model1s and Model2s for different tree species can be derived (e.g. the maximum R2 = 0.574 for Q. robur). Overall, this study basically validated the algorithm proposed for co-prediction of multifarious SSVs, and the contribution is equivalent to developing a viable solution for SSV-estimation upscaling, which is useful for large-scale investigations of forest understory, macroecosystem ecology, global vegetation dynamics and global carbon cycle.This work was financially supported in part by the National Natural Science Foundation of China [grant numbers 41471281 and 31670718] and in part by the SRF for ROCS, SEM, China. (41471281 - National Natural Science Foundation of China; 31670718 - National Natural Science Foundation of China; SRF for ROCS, SEM, China)http://www-tandfonline-com.ezproxy.bu.edu/doi/abs/10.1080/17538947.2016.1247473?journalCode=tjde20Published versio

    Quantum Anomalous Hall Effect in Hg1y_{1-y}Mny_{y}Te Quantum Wells

    Full text link
    The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg1y_{1-y}Mny_{y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the MnMn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the MnMn atoms. This effect enables dissipationless charge current in spintronics devices.Comment: 5 pages, 3 figures. For high resolution figures see final published version when availabl

    Model Hamiltonian for Topological Insulators

    Full text link
    In this paper we give the full microscopic derivation of the model Hamiltonian for the three dimensional topological insulators in the Bi2Se3Bi_2Se_3 family of materials (Bi2Se3Bi_2Se_3, Bi2Te3Bi_2Te_3 and Sb2Te3Sb_2Te_3). We first give a physical picture to understand the electronic structure by analyzing atomic orbitals and applying symmetry principles. Subsequently, we give the full microscopic derivation of the model Hamiltonian introduced by Zhang {\it et al} [\onlinecite{zhang2009}] based both on symmetry principles and the kp{\bf k}\cdot{\bf p} perturbation theory. Two different types of k3k^3 terms, which break the in-plane full rotation symmetry down to three fold rotation symmetry, are taken into account. Effective Hamiltonian is derived for the topological surface states. Both the bulk and the surface models are investigated in the presence of an external magnetic field, and the associated Landau level structure is presented. For more quantitative fitting to the first principle calculations, we also present a new model Hamiltonian including eight energy bands.Comment: 18 pages, 9 figures, 5 table

    Quadrature algorithms to the luminosity distance with a time-dependent dark energy model

    Full text link
    In our previous work, we have proposed two methods for computing the luminosity distance d_{L}^{\Lambda} in LCDM model. In this paper, two effective quadrature algorithms, known as Romberg Integration and composite Gaussian Quadrature, are presented to calculate the luminosity distance d_{L}^{CPL} in the Chevallier-Polarski-Linder parametrization(CPL) model. By comparing the efficiency and accuracy of the two algorithms, we find that the second is more promising. Moreover, we develop another strategy adapted for approximating d_{L}^{\Lambda} in flat LCDM universe. To some extent, our methods can make contributions to the recent numerical stimulation for the investigation of dark energy cosmology.Comment: 12 pages, 3 figures, 3 tables, version accepted for publication in JCAP (http://iopscience.iop.org/1475-7516/2011/11/047

    Incorporation of GM-CSF or CD40L Enhances the Immunogenicity of Hantaan Virus-Like Particles

    Get PDF
    A safe and effective Hantaan virus (HTNV) vaccine is highly desirable because HTNV causes an acute and often fatal disease (hemorrhagic fever with renal syndrome, HFRS). Since the immunity of the inactivated vaccine is weak and the safety is poor, HTNV virus-like particles (VLPs) offer an attractive and safe alternative. These particles lack the viral genome but are perceived by the immune system as virus particles. We hypothesized that adding immunostimulatory signals to VLPs would enhance their efficacy. To accomplish this enhancement, we generated chimeric HTNV VLPs containing glycosylphosphatidylinositol (GPI)-anchored granulocyte macrophage colony-stimulating factor (GM-CSF) or CD40 ligand (CD40L) and investigated their biological activity in vitro. The immunization of mice with chimeric HTNV VLPs containing GM-CSF or CD40L induced stronger humoral immune responses and cellular immune responses compared to the HTNV VLPs and Chinese commercial inactivated hantavirus vaccine. Chimeric HTNV VLPs containing GM-CSF or CD40L also protected mice from an HTNV challenge. Altogether, our results suggest that anchoring immunostimulatory molecules into HTNV VLPs can be a potential approach for the control and prevention of HFRS
    corecore