20,646 research outputs found
Nonvacuum pseudoparticles, quantum tunneling and metastability
It is shown that nonvacuum pseudoparticles can account for quantum tunneling
and metastability. In particular the saddle-point nature of the pseudoparticles
is demonstrated, and the evaluation of path-integrals in their neighbourhood.
Finally the relation between instantons and bounces is used to derive a result
conjectured by Bogomolny and Fateyev.Comment: Latex, 16 pages, no figure
Quantum Phase Interference for Quantum Tunneling in Spin Systems
The point-particle-like Hamiltonian of a biaxial spin particle with external
magnetic field along the hard axis is obtained in terms of the potential field
description of spin systems with exact spin-coordinate correspondence. The
Zeeman energy term turns out to be an effective gauge potential which leads to
a nonintegrable pha se of the Euclidean Feynman propagator.
The phase interference between clockwise and anticlockwise under barrier
propagations is recognized explicitly as the Aharonov-Bohm effect. An
additional phase which is significant for quantum phase interference is
discovered with the quantum theory of spin systems besides the known phase
obtained with the semiclassical treatment of spin. We also show the energ y
dependence of the effect and obtain the tunneling splitting at excited states
with the help of periodic instantons.Comment: 19 pages, no figure, to appear in PR
Winding number transitions at finite temperature in the Abelian-Higgs model
Following our earlier investigations we examine the quantum-classical winding
number transition in the Abelian-Higgs system. It is demonstrated that the
sphaleron transition in this system is of the smooth second order type in the
full range of parameter space. Comparison of the action of classical vortices
with that of the sphaleron supports our finding.Comment: final version, to appear in J. Phys.
Vacuum induced Berry phases in single-mode Jaynes-Cummings models
Motivated by the work [Phys. Rev. Lett. 89, 220404 (2002)] for detecting the
vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we
show here that, for a parameter-dependent single-mode JCM, certain atom-field
states also acquire the photon-number-dependent Berry phases after the
parameter slowly changed and eventually returned to its initial value. This
geometric effect related to the field quantization still exists, even the filed
is kept in its vacuum state. Specifically, a feasible Ramsey interference
experiment with cavity quantum electrodynamics (QED) system is designed to
detect the vacuum-induced Berry phase.Comment: 10 pages, 4 figures
Enhancement of Quantum Tunneling for Excited States in Ferromagnetic Particles
A formula suitable for a quantitative evaluation of the tunneling effect in a
ferromagnetic particle is derived with the help of the instanton method. The
tunneling between n-th degenerate states of neighboring wells is dominated by a
periodic pseudoparticle configuration. The low-lying level-splitting previously
obtained with the LSZ method in field theory in which the tunneling is viewed
as the transition of n bosons induced by the usual (vacuum) instanton is
recovered. The observation made with our new result is that the tunneling
effect increases at excited states. The results should be useful in analyzing
results of experimental tests of macroscopic quantum coherence in ferromagnetic
particles.Comment: 18 pages, LaTex, 1 figur
Application of Instantons: Quenching of Macroscopic Quantum Coherence and Macroscopic Fermi-Particle Configurations
Starting from the coherent state representation of the evolution operator
with the help of the path-integral, we derive a formula for the low-lying
levels of a quantum spin
system. The quenching of macroscopic quantum coherence is understood as the
vanishing of in disagreement with the suppression of tunneling
(i.e. ) as claimed in the literature. A new
configuration called the macroscopic Fermi-particle is suggested by the
character of its wave function. The tunneling rate
() does not vanish, not for integer spin s nor for
a half-integer value of s, and is calculated explicitly (for the position
dependent mass) up to the one-loop approximation.Comment: 13 pages, LaTex, no figure
Phase diagram of two-species Bose-Einstein condensates in an optical lattice
The exact macroscopic wave functions of two-species Bose-Einstein condensates
in an optical lattice beyond the tight-binding approximation are studied by
solving the coupled nonlinear Schrodinger equations. The phase diagram for
superfluid and insulator phases of the condensates is determined analytically
according to the macroscopic wave functions of the condensates, which are seen
to be traveling matter waves.Comment: 13 pages, 2 figure
Aharonov-Casher phase and persistent current in a polyacetylene ring
We investigate a polyacetylene ring in an axially symmetric, static electric
field with a modified SSH Hamiltonian of a polyacetylene chain. An effective
gauge potential of the single electron Hamiltonian due to spin-field
interaction is obtained and it results in a Fr\"{o}hlich's type of
superconductivity equivalent to the effect of travelling lattice wave. The
total energy as well as the persistent current density are shown to be a
periodic function of the flux of the gauge field embraced by the polyacetylene
ring.Comment: 12 pages, 5 figure
Electronic States and Magnetism of Mn Impurities and Dimers in Narrow-Gap and Wide-Gap III-V Semiconductors
Electronic states and magnetic properties of single impurity and dimer
doped in narrow-gap and wide-gap - semiconductors have been studied
systematically. It has been found that in the ground state for single
impurity, - complex is antiferromagnetic (AFM) coupling when -
hybridization is large and both the hole level and the
impurity level are close to the midgap; or very weak ferromagnetic (FM)
when is small and both and are deep in the valence band.
In dimer situation, the spins are AFM coupling for half-filled or
full-filled orbits; on the contrast, the Mn spins are double-exchange-like
FM coupling for any -orbits away from half-filling. We propose the strong
{\it p-d} hybridized double exchange mechanism is responsible for the FM order
in diluted - semiconductors
- …