226 research outputs found

    Energy band structure and intrinsic coherent properties in two weakly linked Bose Einstein Condensates

    Full text link
    The energy band structure and energy splitting due to quantum tunneling in two weakly linked Bose-Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of Bose Josephson junction were investigated in terms of energy splitting. For EC/EJ1E_{C}/E_{J}\ll 1, the energy splitting is small and the system is globally phase coherent. In the opposite limit, EC/EJ1E_{C}/E_{J}\gg 1, the energy splitting is large and the system becomes a phase dissipation. Our reslults suggest that one should investigate the coherence phenomna of BJJ in proper condition such as EC/EJ1E_{C}/E_{J}\sim 1.Comment: to appear in Phys. Rev. A, 2 figure

    Resonant Magnetic Vortices

    Full text link
    By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm-type. Regge poles of the SS-matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a new kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices.Comment: 6 pages, 7 figure

    Suppression of Quantum Phase Interference in Molecular Magnets Fe₈ with Dipolar-Dipolar Interaction

    Get PDF
    Renormalized tunnel splitting with a finite distribution in the biaxial spin model for molecular magnets is obtained by taking into account the dipolar interaction of enviromental spins. Oscillation of the resonant tunnel splitting with a transverse magnetic field along the hard axis is smeared by the finite distribution which subsequently affects the quantum steps of hysteresis curve evaluated in terms of the modified Landau-Zener model of spin flipping induced by the sweeping field. We conclude that the dipolar-dipolar interaction drives decoherence of quantum tunnelling in molcular magnets Fe₈, which explains why the quenching points of tunnel spliting between odd and even resonant tunnelling predcited theoretically were not observed experimentally.Comment: 5 pages including 3 figure and 1 table. To appear in Physical Review

    Larmor precession and tunneling time of a relativistic neutral spinning particle through an arbitrary potential barrier

    Get PDF
    The Larmor precession of a relativistic neutral spin-1/2 particle in a uniform constant magnetic field confined to the region of a one-dimensional arbitrary potential barrier is investigated. The spin precession serves as a clock to measure the time spent by a quantum particle traversing a potential barrier. With the help of general spin coherent state it is explicitly shown that the precession time is equal to the dwell time.Comment: 10 pages, 1 figure. To be published in Phys. Rev. A (01 February 2002

    Oscillation of the tunnel splitting in nanospin systems within the particle mapping formalism

    Full text link
    The oscillation of tunnel splitting in the biaxial spin system within magnetic field along the anisotropy axis is analyzed within the particle mapping approach, rather than in the (\theta-\phi) spin coherent-state representation. In our mapping procedure, the spin system is transformed into a particle moving in the restricted S1S^1 geometry whose wave function subjects to the boundary condition involving additional phase shift. We obtain the new topological phase that plays the same role as the Wess-Zumino action in spin coherent-state representation. Considering the interference of two possible trajectories, instanton and anti-instanton, we get the identical condition for the field at which tunneling is quenched, with the previous result within spin coherent-state representation.Comment: 11 pages, 1 figure; Some typographical errors have been correcte

    Efficient Raman Sideband Generation in a Coherent Atomic Medium

    Get PDF
    We demonstrate the efficient generation of Raman sidebands in a medium coherently prepared in a dark state by continuous-wave low-intensity laser radiation. Our experiment is performed in sodium vapor excited in Λ\Lambda configuration on the D1_{1} line by two laser fields of resonant frequencies ω1\omega_{1} and ω2\omega_{2}, and probed by a third field % \omega_{3}. First-order sidebands for frequencies ω1\omega_{1}, ω2\omega_{2} and up to the third-order sidebands for frequency ω3\omega_{3} are observed. The generation starts at a power as low as 10 microwatt for each input field. Dependencies of the intensities of both input and generated waves on the frequency difference (ω1ω2\omega_{1}-\omega_{2}), on the frequency ω3\omega_{3} and on the optical density are investigated.Comment: 7 pages, 6 figure

    Quasi-classical path integral approach to supersymmetric quantum mechanics

    Full text link
    {}From Feynman's path integral, we derive quasi-classical quantization rules in supersymmetric quantum mechanics (SUSY-QM). First, we derive a SUSY counterpart of Gutzwiller's formula, from which we obtain the quantization rule of Comtet, Bandrauk and Campbell when SUSY is good. When SUSY is broken, we arrive at a new quantization formula, which is found as good as and even sometime better than the WKB formula in evaluating energy spectra for certain one-dimensional bound state problems. The wave functions in the stationary phase approximation are also derived for SUSY and broken SUSY cases. Insofar as a broken SUSY case is concerned, there are strong indications that the new quasi-classical approximation formula always overestimates the energy eigenvalues while WKB always underestimates.Comment: 13 pages + 5 figures, complete paper submitted as postscript file, to appear in Phys. Rev.

    Instantons and Yang-Mills Flows on Coset Spaces

    Full text link
    We consider the Yang-Mills flow equations on a reductive coset space G/H and the Yang-Mills equations on the manifold R x G/H. On nonsymmetric coset spaces G/H one can introduce geometric fluxes identified with the torsion of the spin connection. The condition of G-equivariance imposed on the gauge fields reduces the Yang-Mills equations to phi^4-kink equations on R. Depending on the boundary conditions and torsion, we obtain solutions to the Yang-Mills equations describing instantons, chains of instanton-anti-instanton pairs or modifications of gauge bundles. For Lorentzian signature on R x G/H, dyon-type configurations are constructed as well. We also present explicit solutions to the Yang-Mills flow equations and compare them with the Yang-Mills solutions on R x G/H.Comment: 1+12 page

    Multiorder coherent Raman scattering of a quantum probe field

    Full text link
    We study the multiorder coherent Raman scattering of a quantum probe field in a far-off-resonance medium with a prepared coherence. Under the conditions of negligible dispersion and limited bandwidth, we derive a Bessel-function solution for the sideband field operators. We analytically and numerically calculate various quantum statistical characteristics of the sideband fields. We show that the multiorder coherent Raman process can replicate the statistical properties of a single-mode quantum probe field into a broad comb of generated Raman sidebands. We also study the mixing and modulation of photon statistical properties in the case of two-mode input. We show that the prepared Raman coherence and the medium length can be used as control parameters to switch a sideband field from one type of photon statistics to another type, or from a non-squeezed state to a squeezed state and vice versa.Comment: 12 pages, 7 figures, to be published in Phys. Rev.

    Fabrication of CuO nanoparticle interlinked microsphere cages by solution method

    Get PDF
    Here we report a very simple method to convert conventional CuO powders to nanoparticle interlinked microsphere cages by solution method. CuO is dissolved into aqueous ammonia, and the solution is diluted by alcohol and dip coating onto a glass substrate. Drying at 80 °C, the nanostructures with bunchy nanoparticles of Cu(OH)2can be formed. After the substrate immerges into the solution and we vaporize the solution, hollow microspheres can be formed onto the substrate. There are three phases in the as-prepared samples, monoclinic tenorite CuO, orthorhombic Cu(OH)2, and monoclinic carbonatodiamminecopper(II) (Cu(NH3)2CO3). After annealing at 150 °C, the products convert to CuO completely. At annealing temperature above 350 °C, the hollow microspheres became nanoparticle interlinked cages
    corecore