50 research outputs found

    Study of indium tin oxide thin films deposited on acrylics substrates by Ion beam assisted deposition technique

    Get PDF
    Indium tin oxide (ITO) thin films have been deposited onto acrylics (PMMA) substrates by ion beam assisted deposition technique at different oxygen flows. The structural, optical and electrical properties of the deposited films have been characterized by X-ray diffraction, transmittance, FTIR, ellipometry and Hall effect measurements. The optical constants of the deposited films have been calculated by fitting the ellipsometric spectra. The effects of the oxygen flow on the properties of the deposited films have been studied. It has been found that 40 sccm oxygen flow is an optimum value for getting the films with good transmittance and low electrical resistivity

    Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron

    No full text
    To improve the mechanical properties of heavy section ductile cast iron, bismuth (Bi) was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the five castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture

    Effects of Silicon on Mechanical Properties and Fracture Toughness of Heavy-Section Ductile Cast Iron

    No full text
    The effects of silicon (Si) on the mechanical properties and fracture toughness of heavy-section ductile cast iron were investigated to develop material for spent-nuclear-fuel containers. Two castings with different Si contents of 1.78 wt.% and 2.74 wt.% were prepared. Four positions in the castings from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties’ testing. Results show that the tensile strength, elongation, impact toughness and fracture toughness at different positions of the two castings decrease with the decrease in cooling rate. With an increase in Si content, the graphite morphology and the mechanical properties at the same position deteriorate. Decreasing cooling rate changes the impact fracture morphology from a mixed ductile-brittle fracture to a brittle fracture. The fracture morphology of fracture toughness is changed from ductile to brittle fracture. When the Si content exceeds 1.78 wt.%, the impact and fracture toughness fracture morphology transforms from ductile to brittle fracture. The in-situ scanning electronic microscope (SEM) tensile experiments were first used to observe the dynamic tensile process. The influence of the vermicular and temper graphite on fracture formation of heavy section ductile iron was investigated

    A Multiscale Instance Segmentation Method Based on Cleaning Rubber Ball Images

    No full text
    The identification of wear rubber balls in the rubber ball cleaning system in heat exchange equipment directly affects the descaling efficiency. For the problem that the rubber ball image contains impurities and bubbles and the segmentation is low in real time, a multi-scale feature fusion real-time instance segmentation model based on the attention mechanism is proposed for the object segmentation of the rubber ball images. First, we introduce the Pyramid Vision Transformer instead of the convolution module in the backbone network and use the spatial-reduction attention layer of the transformer to improve the feature extraction ability across scales and spatial reduction to reduce computational cost; Second, we improve the feature fusion module to fuse image features across scales, combined with an attention mechanism to enhance the output feature representation; Third, the prediction head separates the mask branches separately. Combined with dynamic convolution, it improves the accuracy of the mask coefficients and increases the number of upsampling layers. It also connects the penultimate layer with the second layer feature map to achieve detection of smaller images with larger feature maps to improve the accuracy. Through the validation of the produced rubber ball dataset, the Dice score, Jaccard coefficient, and mAP of the actual segmented region of this network with the rubber ball dataset are improved by 4.5%, 4.7%, and 7.73%, respectively, and our model achieves 33.6 fps segmentation speed and 79.3% segmentation accuracy. Meanwhile, the average precision of Box and Mask can also meet the requirements under different IOU thresholds. We compared the DeepMask, Mask R-CNN, BlendMask, SOLOv1 and SOLOv2 instance segmentation networks with this model in terms of training accuracy and segmentation speed and obtained good results. The proposed modules can work together to better handle object details and achieve better segmentation performance

    Insight into the Relationship between Negative Thermal Expansion and Structure Flexibility: The Case of Zn(CN)2-Type Compounds

    No full text
    High structure flexibility can lead to large negative thermal expansion (NTE), but the reason is not clear. In this work, first-principles calculations have been carried out to investigate the relationship between NTE and structure flexibility in Zn(CN)2-type compounds. Smaller bulk modulus corresponds to larger compressibility, thus making the crystal structure more flexible and more suitable for NTE. It indicated that the ionic nature of the bond and the bond length jointly affect the structural flexibility and then act on the transverse vibration of C and N atoms. The results of lattice dynamic suggested that higher structural flexibility promotes a greater number of low-frequency optical modes with negative GrĂĽneisen parameters, resulting in a larger NTE. This work also gives us new insight into the design of NTE materials

    Understanding Large Negative Thermal Expansion of NdFe(CN)6 through the Electronic Structure and Lattice Dynamics

    No full text
    A large negative thermal expansion (NTE) (αv = -4.1 × 10-5 K-1, 100-525 K) has been discovered in NdFe(CN)6. Here, the synchrotron X-ray diffraction and lattice dynamics calculations using the density functional theory were conducted to understand the NTE in NdFe(CN)6. The information obtained on the bond nature of the Nd-N≡C-Fe linkage and on the atomic thermal vibrations suggests that the transverse vibrations of the -N≡C- group, in particular from N atoms, produced the NTE in NdFe(CN)6. This is corroborated by the calculated Grüneisen parameters, which confirm the relationship between NTE and CN atomic vibrations. The results provide a helpful contribution toward the realization of new materials with negative or controllable thermal expansion

    Plasmonic Nanostructure for Enhanced Light Absorption in Ultrathin Silicon Solar Cells

    Get PDF
    The performances of thin film solar cells are considerably limited by the low light absorption. Plasmonic nanostructures have been introduced in the thin film solar cells as a possible solution around this issue in recent years. Here, we propose a solar cell design, in which an ultrathin Si film covered by a periodic array of Ag strips is placed on a metallic nanograting substrate. The simulation results demonstrate that the designed structure gives rise to 170% light absorption enhancement over the full solar spectrum with respect to the bared Si thin film. The excited multiple resonant modes, including optical waveguide modes within the Si layer, localized surface plasmon resonance (LSPR) of Ag stripes, and surface plasmon polaritons (SPP) arising from the bottom grating, and the coupling effect between LSPR and SPP modes through an optimization of the array periods are considered to contribute to the significant absorption enhancement. This plasmonic solar cell design paves a promising way to increase light absorption for thin film solar cell applications

    Interaction Mechanism of RGD Tripeptide on Different Surfaces of Mg and Mg Alloys: A First-Principles Study

    No full text
    Functional Arg-Gly-Asp (RGD) tripeptide has a tremendous potential in clinical applications to accelerate the endothelialization of Magnesium (Mg) alloy vascular stent surface. The interaction mechanism of RGD on different surfaces of Mg and Mg alloy is important for promoting the development of Mg alloy vascular stent, yet still unclear. In the present work, first-principles calculation within density functional theory (DFT) was performed to investigate the interaction mechanism. The electron redistribution, effect of alloying elements and changes in the density of states of the adsorption systems were studied. The results revealed that RGD interacted with different surfaces of Mg (0001), Mg(112¯0) and Mg(101¯1) through ligand covalent bond; the pronounced localization of electrons of Mg(112¯0) and Mg(101¯1) surfaces promoted the adsorption of RGD tripeptide compared with that on the Mg(0001) surface; Zn/Y/Nd alloying elements improved the adsorption of RGD. Calculated results could provide insight for the interaction mechanism of biomolecule on the Mg and Mg-based alloy surfaces, and point out some directions for the future experimental efforts
    corecore