16,734 research outputs found

    Entanglement in the anisotropic Heisenberg XYZ model with different Dzyaloshinskii-Moriya interaction and inhomogeneous magnetic field

    Full text link
    We investigate the entanglement in a two-qubit Heisenberg XYZ system with different Dzyaloshinskii-Moriya(DM) interaction and inhomogeneous magnetic field. It is found that the control parameters (DxD_{x}, BxB_{x} and bxb_{x}) are remarkably different with the common control parameters (DzD_{z},BzB_{z} and bzb_{z}) in the entanglement and the critical temperature, and these x-component parameters can increase the entanglement and the critical temperature more efficiently. Furthermore, we show the properties of these x-component parameters for the control of entanglement. In the ground state, increasing DxD_{x} (spin-orbit coupling parameter) can decrease the critical value bxcb_{xc} and increase the entanglement in the revival region, and adjusting some parameters (increasing bxb_{x} and JJ, decreasing BxB_{x} and Δ\Delta) can decrease the critical value DxcD_{xc} to enlarge the revival region. In the thermal state, increasing DxD_{x} can increase the revival region and the entanglement in the revival region (for TT or bxb_{x}), and enhance the critical value BxcB_{xc} to make the region of high entanglement larger. Also, the entanglement and the revival region will increase with the decrease of BxB_{x} (uniform magnetic field). In addition, small bxb_{x} (nonuniform magnetic field) has some similar properties to DxD_{x}, and with the increase of bxb_{x} the entanglement also has a revival phenomenon, so that the entanglement can exist at higher temperature for larger bxb_{x}.Comment: 8 pages, 8 figure

    Consistency of Loop Regularization Method and Divergence Structure of QFTs Beyond One-Loop Order

    Full text link
    We study the problem how to deal with tensor-type two-loop integrals in the Loop Regularization (LORE) scheme. We use the two-loop photon vacuum polarization in the massless Quantum Electrodynamics (QED) as the example to present the general procedure. In the processes, we find a new divergence structure: the regulated result for each two-loop diagram contains a gauge-violating quadratic harmful divergent term even combined with their corresponding counterterm insertion diagrams. Only when we sum up over all the relevant diagrams do these quadratic harmful divergences cancel, recovering the gauge invariance and locality.Comment: 33 pages, 5 figures, Sub-section IIIE removed, to be published in EPJ

    Gamma-Ray Burst Jet Breaks Revisited

    Get PDF
    Gamma-ray Burst (GRB) collimation has been inferred with the observations of achromatic steepening in GRB light curves, known as jet breaks. Identifying a jet break from a GRB afterglow light curve allows a measurement of the jet opening angle and true energetics of GRBs. In this paper, we re-investigate this problem using a large sample of GRBs that have an optical jet break that is consistent with being achromatic in the X-ray band. Our sample includes 99 GRBs from 1997 February to 2015 March that have optical and, for Swift GRBs, X-ray light curves that are consistent with the jet break interpretation. Out of the 99 GRBs we have studied, 55 GRBs are found to have temporal and spectral behaviors both before and after the break, consistent with the theoretical predictions of the jet break models, respectively. These include 53 long/soft (Type II) and 2 short/hard (Type I) GRBs. Only 1 GRB is classified as the candidate of a jet break with energy injection. Another 41 and 3 GRBs are classified as the candidates with the lower and upper limits of the jet break time, respectively. Most jet breaks occur at 90 ks, with a typical opening angle θj = (2.5 ± 1.0)°. This gives a typical beaming correction factor fb−1∼1000{f}_{b}^{-1}\sim 1000 for Type II GRBs, suggesting an even higher total GRB event rate density in the universe. Both isotropic and jet-corrected energies have a wide span in their distributions: log(Eγ,iso/erg) = 53.11 with σ = 0.84; log(EK,iso/erg) = 54.82 with σ = 0.56; log(Eγ/erg) = 49.54 with σ = 1.29; and log(EK/erg) = 51.33 with σ = 0.58. We also investigate several empirical correlations (Amati, Frail, Ghirlanda, and Liang–Zhang) previously discussed in the literature. We find that in general most of these relations are less tight than before. The existence of early jet breaks and hence small opening angle jets, which were detected in the Swfit era, is most likely the source of scatter. If one limits the sample to jet breaks later than 104 s, the Liang–Zhang relation remains tight and the Ghirlanda relation still exists. These relations are derived from Type II GRBs, and Type I GRBs usually deviate from them
    • …
    corecore