697 research outputs found

    Spin squeezing and concurrence under Lee-Yang dephasing channels

    Full text link
    The Lee-Yang zeros are one-to-one mapping to zeros in the coherence of a probe spin coupled to a many-body system. Here, we study the spin squeezing under two different types of Lee-Yang dephasing channels in which the partition functions vanish at Lee-Yang zeros. Under the first type of the channels in which probes are coupled to their own bath, we find that the performance of spin squeezing is improved and its maximum only depends on the initial state. Moreover, the centers of all the concurrence vanishing domains are corresponding to the Lee-Yang zeros. Under the second type of the channels in which probes are coupled to one bath together, the performance of spin squeezing is not improved, however, the concurrence shares almost the same properties under both channels. These results provide new experimental possibilities in many-body physics and extend a new perspective of the relationship between the entanglement and spin squeezing in probes-bath systems

    An efficient unstructured MUSCL scheme for solving the 2D shallow water equations

    Get PDF
    The aim of this paper is to present a novel monotone upstream scheme for conservation law (MUSCL) on unstructured grids. The novel edge-based MUSCL scheme is devised to construct the required values at the midpoint of cell edges in a more straightforward and effective way compared to other conventional approaches, by making better use of the geometrical property of the triangular grids. The scheme is incorporated into a two-dimensional (2D) cell-centered Godunov-type finite volume model as proposed in Hou et al. (2013a,c) to solve the shallow water equations (SWEs). The MUSCL scheme renders the model to preserve the well-balanced property and achieve high accuracy and efficiency for shallow flow simulations over uneven terrains. Furthermore, the scheme is directly applicable to all triangular grids. Application to several numerical experiments verifies the efficiency and robustness of the current new MUSCL scheme

    A coupled hydrological and hydrodynamic model for flood simulation

    Get PDF
    This paper presents a new flood modelling tool developed by coupling a full 2D hydrodynamic model with hydrological models. The coupled model overcomes the main limitations of the individual modelling approaches, i.e. high computational costs associated with the hydrodynamic models and less detailed representation of the underlying physical processes related to the hydrological models. When conducting a simulation using the coupled model, the computational domain (e.g. a catchment) is first divided into hydraulic and hydrological zones. In the hydrological zones that have high ground elevations and relatively homogeneous land cover or topographic features, a conceptual lumped model is applied to obtain runoff/net rainfall, which is then routed by a group of pre-acquired ‘unit hydrographs’ to the zone borders. These translated hydrographs will then be used to drive the full 2D hydrodynamic model to predict flood dynamics at high resolution in the hydraulic zones that are featured with complex topographic settings, including roads, buildings, etc. The new coupled flood model is applied to reproduce a major flood event that occurred in Morpeth, northeast England in September 2008. While producing similar results, the new coupled model is shown to be computationally much more efficient than the full hydrodynamic model

    Structure-Function Network Mapping and Its Assessment via Persistent Homology

    Get PDF
    Understanding the relationship between brain structure and function is a fundamental problem in network neuroscience. This work deals with the general method of structure-function mapping at the whole-brain level. We formulate the problem as a topological mapping of structure-function connectivity via matrix function, and find a stable solution by exploiting a regularization procedure to cope with large matrices. We introduce a novel measure of network similarity based on persistent homology for assessing the quality of the network mapping, which enables a detailed comparison of network topological changes across all possible thresholds, rather than just at a single, arbitrary threshold that may not be optimal. We demonstrate that our approach can uncover the direct and indirect structural paths for predicting functional connectivity, and our network similarity measure outperforms other currently available methods. We systematically validate our approach with (1) a comparison of regularized vs. non-regularized procedures, (2) a null model of the degree-preserving random rewired structural matrix, (3) different network types (binary vs. weighted matrices), and (4) different brain parcellation schemes (low vs. high resolutions). Finally, we evaluate the scalability of our method with relatively large matrices (2514x2514) of structural and functional connectivity obtained from 12 healthy human subjects measured non-invasively while at rest. Our results reveal a nonlinear structure-function relationship, suggesting that the resting-state functional connectivity depends on direct structural connections, as well as relatively parsimonious indirect connections via polysynaptic pathways

    Leg Attachment Devices of Tiger Beetles (Coleoptera, Cicindelidae) and Their Relationship to Their Habitat Preferences

    Get PDF
    Adherence to smooth substrates is closely related to the morphology and distribution of adhesive structures on insects’ legs, so it is hypothesized that the adhesive structures have been evolved as an adaption to smooth substrates in specific environments. However, the factors that promote the evolution of adhesive structures are still unclear. Using scanning electron microscopy, we compared the microstructure of the tarsi of five tiger beetle species, both male and female, belonging to two tribes living in arboreal and non-arboreal environments. We found that the different types of adhesive setae, including elongated spoon-like setae, elliptical setae, branched setae, filament-like setae, discoidal setae, spatulate setae and tapered setae, varied in different environments and genders. The adaptive evolution of these adhesive structures was probably driven by the selective pressures of both mating behavior and the presence of smooth substrates in the respective environments
    • …
    corecore